
CHAPTER 4

Hardware Design:
Architecture and
Interfacing Techniques

44

AINAMIktmawil-41(4.Nio!. ,,(t.4*4.640MANOMMOININ.

INTRODUCTION 	 Hardware Design:
Architecture and
Interfacing Techniques

INTRODUCTION

Describing the 9900 system from a hardware standpoint clearly requires detailed
descriptions of a large number of design features as well as the interaction between the
9900 and peripheral circuits. In this chapter, material is arranged to develop a 9900
system from the viewpoint of the 9900 microprocessor chip. In the architecture section,
the concepts of instruction fetch and decode, the memory-to-microprocessor bus
structures, and memory partitioning (the use of volatile and non-volatile memories) are
explained. Other topics include descriptions of the registers on the microprocessor chip
and the working registers, the concept of memory-to-memory architecture, timing and
descriptions of interface signals.

A special section covers memory in detail, especially the controls and timing, multichip
memory structure, static and dynamic RAM, and DMA (direct memory access).

Following the architecture and memory sections are sections devoted to the instruction

■ 4 	set, design considerations for input/output techniques especially in CRU development,
the interrupt structure and electrical requirements.

A special section devoted to the unique features of the single chip microcomputer, the
TMS9940, is included at the end of the chapter.

Information in this chapter flows from the most basic fundamentals to an understanding
of the more complex design features of the 9900 and the chip family. When very specific
and detailed information regarding pin assignments and speed is given, the TMS9900
device specifications are used. These examples will give direction and illustration for
interpreting the data sheet information found in Chapter 8.

The 9900 family of 16-bit microprocessors includes several device types each aimed at a
specific market segment. The same basic architecture and instruction set are maintained
throughout. Consider first the single-chip microprocessor which consists of an ALU
(arithmetic and logic unit), a few registers, and instruction handling circuitry (Figure
4-1). There is no memory on the chip for instructions and data so it must be interfaced to
memory devices, usually RAM for data (and instructions which must be modified) and
ROM, PROM, or EPROM for instructions (Figure 4-2). It is often desirable to store
instructions in a non-volatile memory to eliminate the requirement for loading the
program into memory immediately following application of power. This is especially
important in dedicated applications where the program is fixed and power off-on cycles
are common occurrences.

The microprocessor is connected to memory devices and external input/output (I/O)
devices via sets of signals or busses (Figure 4-2). An address bus selects a word of
memory. The contents of this word will be transferred to or from the microprocessor via
the data bus. Control signals required to effect the transfer of information between the
microprocessor and the memory are grouped into a control bus.

4-2 	 9900 FAMILY SYSTEMS DESIGN

ADDRESS BUS

9900 CONTROL BUS

INSTRUCTION
MEMORY

DATA
MEMORY

DATA BUS

Hardware Design:
	

INTRODUCTION
Architecture and
Interfacing Techniques

DEDICATED
REGISTERS

INSTRUCTION
HANDLING
CIRCUITRY

ALU

Figure 4-1. The 9900 Microprocessor

The interface to external devices (I/O) may be accomplished by using the address, data
and control busses. This technique is known as parallel I/O or memory mapped I/O
because data is transferred in parallel and the I/O devices occupy locations in the
memory address space.

Figure 4-2. 9900 Microprocessor and Memory

44

9900 FAMILY SYSTEMS DESIGN 	 4-3

INTRODUCTION Hardware Design:
Architecture and
Interfacing Techniques

The extension of parallel I/O is direct memory access (DMA). External hardware is
employed to act as a separate special purpose processor for transferring large blocks of
contiguous memory words to or from an external device (such as a disc memory). Once
such a transfer is set up (via a string of instructions in the program), the DMA controller
automatically synchronizes the transfer of data between the external device and memory,
sharing the buses timewise with the microprocessor.

The 9900 architecture includes one other important I/O technique. Designed primarily
for single bit I/O transfers, the communications register unit (CRU) provides a
powerful alternative to parallel, memory mapped I/O (Figure 4-3). The address bus is
used to select one of 4096 individual input or output bits in the CRU address space.
During the execution of one of the single bit CRU instructions, the processor transfers
one bit in or out. Multiple bit instructions are also available which provide for transfer of
up to sixteen bits via a single CRU operation.

While this chapter describes primarily the basic TMS9900 16-bit microprocessor, all of
the 9900 family CPU's are covered in detail in the Product Data chapter.

ADDRESS BUS

tI

BIT
ORIENTED

I/O
(CRU)

9900 MEMORY PARALLEL
I/O

CRU
BUS

CONTROL BUS

DATA BUS

Figure 4-3. 9900 Bus iirchitecture

4-4 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

ARCHITECTURE
Architecture and
Interfacing Techniques

An overview is given here to establish design paths for microprocessor systems. Listed
below are the processors in the 9900 family.
Device 	 Technology Description
TMS 9900 	N-MOS 	16-bit CPU 3 MHz
TMS 9900-40 	N-MOS 	16-bit CPU 4 MHz
SBP 9900A 	I'L 	16-bit CPU —55° to 125°C
TMS 9980A/81 	N-MOS 	16-bit CPU 40-pin package
TMS 9985 	N-MOS 	16-bit CPU 40-pin package
TMS 9940 	N-MOS 	16-bit CPU with 2 k on-chip ROM

General purpose applications are designed around the TMS9900 device. The same is
true for systems with severe environmental specs; however, a transition to the
SBP9900A is made after the design is complete and the software completely debugged.
The TMS9980A/81 and the TMS9985 are used where the 40-pin package is
advantageous and a slightly slower speed is acceptable. The TMS9940 is a single-chip
microcomputer for small special purpose controllers.

At the end of this chapter and in the Product Data chapter there is detailed design
data for application of the LSI (large scale integration) peripheral support circuits in the
9900 family which are available for use in 9900 microprocessor-based systems. But in
order to read and understand the data presented in this chapter and in this book, an
understanding of the basic fundamentals of microprocessors is needed.

ARCHITECTURE

BASIC MICROPROCESSOR CHIP

The 9900 is an advanced 16-bit LSI microprocessor with minicomputer-like architecture
and instructions. It is easy to understand and easy to use. Consider first the
microprocessor device itself (Figure 4-4). Operations are carried out with a set of
dedicated registers, an ALU, and instruction handling circuits. As clock signals are
applied, the processor will fetch an instruction word from a memory (external to the
chip), will execute it, fetch another instruction, execute it and so on. In each case the
instruction is saved in an instruction register (IR) on the chip. The decode circuit sets up
the appropriate controls based on the content of the instruction register for a multi-step
execution phase. A memory address register (MAR) is used to hold address information
on the address bus. The ALU and the other registers perform their specified functions
during the execute phase of the instruction cycle.

MICROPROCESSOR REGISTERS

There are three registers on the 9900 chip which are the key architectural features of
the microprocessor (Figure 4-5). They are the workspace pointer (WP), the program
counter (PC), and the status register (ST).

4/

9900 FAMILY SYSTEMS DESIGN 	 4-5

INSTRUCTION
DECODE

AND
CONTROL

IR

ALU

MAR

WP

PC

ST

S

WORKSPACE POINTER

PROGRAM COUNTER

STATUS REGISTER

ARCHITECTURE
	

Hardware Design:
Architecture and
Interfacing Techniques

■ 4

Figure 4-4. 9900 Functional Elements
Workspace Pointer

The general purpose registers for the 9900 are implemented as blocks of memory called
workspaces. A workspace consists of 16 contiguous words of memory, but are
general registers to the user. The workspace pointer on the 9900 chip holds the address
of the first word in the workspace. After initializing the content of the WP at the
beginning of a program (or subprogram), the programmer may concentrate on writing a
program using the registers to hold data words or to address data elsewhere in memory.

Figure 4-5. Three Important Registers

4-6 	 9900 FAMILY SYSTEMS DESIGN

"JUMP TO z"

PC

•

Hardware Design:
	 ARCHITECTURE

Architecture and
Interfacing Techniques

Program Counter

The program counter (PC) in the 9900 is used in the conventional way to locate the next
instruction to be executed. As each instruction is executed, the program counter is
incremented to the next consecutive word address. Because word addresses are even
numbers in the 9900, the program counter is incremented by two in order to address
sequential instructions. If the instruction to be executed occupies two or three memory
words, the program counter will be incremented to generate sequential (even) addresses
to access the required number of words. At the end of execution the PC is incremented
to the next even address which is the location of the next instruction. If the instruction to
be executed is a jump or branch instruction, the program counter is loaded with a new
address and program execution continues starting with the instruction at that location in
memory.

Figure 4-6 shows the program counter pointing to (addressing) instruction words in the
program. Starting with location (x) the instructions are performed in sequence until a
jump is encountered at (y). Processing resumes sequentially starting at location (z) which
was the address specified by the jump instruction to be placed in the program counter.

Status Register

911.111., The status register (ST) is the basis for decision making during program execution.
Individual bits of the ST are set as flags as the result of instructions. They may thereafter
be tested in the execution of conditional jump instructions. Figure 4-7 shows the status
register and its flag bits.

PROGRAM IN MEMORY

44

Figure 4-6. Program Counter Operation

9900 FAMILY SYSTEMS DESIGN
	

4-7

ARCHITECTURE
	

Hardware Design:
Architecture and
Interfacing Techniques

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L>A>=O0 P X RESERVED INTERRU
I
PT MASK

I 	I 	I

Bit Function

0 Logical "Greater Than"
1 Arithmetic "Greater Than"
2 Equal
3 Carry
4 Overflow
5 Parity
6 XOP Instruction Being Executed

12-15 Interrupt Mask

Figure 4-7. Status Register

The first three bits are set as a result of comparisons. Some instructions identify two
operands (numbers) to be compared. If the first is greater than the second, the "greater
than" bit should be set. In the 9900 there are two such conditions. First, the logical-
greater-than bit considers 16-bit words as positive integers and the comparison is made
accordingly. Second, the arithmetic-greater-than bit is set as the result of a comparison of
two numbers which are considered in two's complement form. For example: consider the
numbers A and B below as the numbers in the compare instruction C A, B:

A 1000 1110 1100 0101

B 0110 1010 1100 1101

If they are 16-bit positive integers, it is clear from the most significant bits (MSB) that A
is greater than B, and the logical-greater-than bit of the status register should be set to
one. But as two's complement numbers, A is negative (MSB = 1) and B is positive.
Therefore the arithmetic-greater-than bit must be made zero (A is not greater than B).
Since the processor has no way of knowing how the designer has used the memory words
for data (integers or two's complement), two status bits must be provided for decision
making. The designer can select the appropriate conditional jump instruction (testing
status bit 0 or 1) because he knows what the data format is.

Status bit 2, the equal bit, is set if the two words compared are equal.

In many instructions, only one number is involved or a new number is determined as the
result of an arithmetic operation. For these instructions status bits 0, 1 and 2 are set as
the result of comparisons against zero; that is, if the single number or answer obtained is
greater than zero or equal to zero.

4-8 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 ARCHITECTURE

Architecture and
Interfacing Techniques

MEMORY-TO-MEMORY ARCHITECTURE

The 9900 family of processors employs memory-to-memory architecture in the
execution of instructions. Memory-to-memory architecture is that computer
organization and instruction set which enables direct modification of memory data via a
single instruction. That is, a single instruction can fetch one or two operands from
memory, perform an arithmetic or logical operation, and also store the result in
memory. In doing so, some of the on-chip registers are used as temporary buffers in
much the same manner as an accumulator is used in other systems. But instructions to
load an accumulator and store the accumulator are rarely necessary in memory-
to-memory architecture. A single 9900 instruction (arithmetic or logical) does
the work of two or more instructions in other systems.

Figure 4-8 describes the technique used by the 9900 to locate words in memory as
"registers" in the workspace. Additional information is included for reference purposes.
Registers 1-15 may be used for indexing (see the description of this addressing mode in
Chapter 5 and 6). Register 0 may be used for a shift count. Registers 11 and 13-15 are
used for subroutine techniques. Register 12 is a base value for CRU instructions. These
special uses of the workspace registers are stated here as an initial evaluation of the
register set. Program control and CRU instructions make use of the contents of registers

-,•■, 11-15; therefore, programmers and systems designers must be aware that while use of
these registers is not restricted to their special functions, they should be used with
caution in performing other functions.

The use of these workspaces in an actual application is best described in the
Software Design chapter. But the step-by-step execution of the instructions is of concern
in hardware design because of the execution speed and the techniques for handling
interrupts.

Instruction cycles in the 9900 require memory access not only for the instruction words
but also for operand addresses and actual operands (or numbers to be operated upon.) A
simple add instruction requires at least four memory cycles: one to fetch the instruction,
two to access the two numbers to be added, and one to store the result. As will be
explained in detail later in this chapter, the execution of an add instruction may require
as many as eight memory cycles (because of the addressing mode.) The execution steps
are not the same for all instructions. There is, in fact, substantial variation of execution

...., steps within any one instruction due to addressing. Tables and charts are provided in this
chapter to explain the execution time of each instruction.

411M.

41

9900 FAMILY SYSTEMS DESIGN 	 4-9

ARCHITECTURE Hardware Design:
Architecture and
Interfacing Techniques

■ 4

MEMORY

ADDRESS 	 REGISTER

FT-U• 	I• • 	USE

0 - OPTIONAL SHIFT WORKSPACE POINTER 	WP + 00 0

WP + 02 COUNT

WP + 04 2

WP + 06 3

WP + 08 4

WP + OA 5

WP + OC 6

WP + OE 7 DATA
INDEX

8 WP + 10 OR

WP + 12 9 ADDRESSES
CAPABILITY

WP + 14 10

WP + 16 11 11 — BL RETURN ADDRESS

WP + 18 12 12 — CRU BASE ADDRESS

WP + 1A 13 13 — SAVED WP

WP + 1C 14 14 — SAVED PC

+ 1E 15 15 — SAVED ST

Figure 4-8. 9900 Workspace Registers

There is one additional concept regarding microprocessor and memory interfacing to be
introduced at this time: it is the way in which data is stored in the memory. Figure 4-9
shows the bit numbering for a general 16-bit data word or instruction. Instructions and
16-bit data words are always located at even addresses. Since the memory is byte
addressable, even and odd bytes are the left and right half words in the 16-bit memory
organization and have even or odd addresses respectively. Memories for the TMS9900
and SBP9900A contain 16 bits per word, while' the other processors in the family use 8-
bit memory structures. But all use the same addressing concept: a 16-bit address
describing a 64k-byte address space.

MSB LSB

0 2 3 4 	5 	6 	7 	8 	9 	10 11 12 13 14 15
SIGN
BIT

MSB

V
MEMORY WORD (EVEN ADDRESS)

LSB 	MSB LSB

0 2 3 4 	5 	6 	7 	8 	9 	10 11 12 13 14 15

SIGN
BIT

1. .P,
Bi

V
EVEN BYTE

V
ODD BYTE

Figure 4-9. Word and Byte Formats

4-10 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

ARCHITECTURE
Architecture and
Interfacing Techniques

CONTEXT SWITCHING

One of the more important advantages of the workspace architecture of the
9900 is the fact that "register save and restore" operations are greatly simplified. In any
interrupt processing system, provisions must be made to perform an orderly transition
into a new program segment in response to an interrupt. In other microprocessor
systems, the first few instructions of an interrupt service routine perform the steps of
saving register contents in memory, and then loading new values into the registers.

In the 9900, an interrupt cycle starts with a hardware operation to save the contents of
the three key registers, the WP, PC and ST. In addition, the WP and PC must be loaded
with new numbers. Figures 4-10 and 4-11 show an example of the technique. Prior to the
interrupt, the WP locates the workspace (pointing to 0800), the PC locates the current
instruction (pointing to 0100), and the ST contains the status as a result of the execution
of the current instruction (e.g., 4000). At the end of execution, the processor tests for an
interrupt condition and finding it, performs a context switch as follows.

Step 1. The new WP value is fetched from the appropriate interrupt vector location in
the first 32 words of memory. This identifies the location of the workspace assigned to
the interrupt service routine.

Step 2. The current values of the WP, PC and ST registers are stored in the new
workspace — ST in R15, PC in R14, WP in R13 in that order. After this, the new PC
value is fetched from memory (the second location of the two-word interrupt vector) and
loaded into the PC.

41

MEMORY

PROGRAM A

PROGRAM B

WORKSPACE A

WORKSPACE B

Figure 4-10. Before Context Switch

9900 FAMILY SYSTEMS DESIGN 	 4-11

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

► 4

9900

WP

PC

ST

0820

0200

MEMORY

PROGRAM A

PROGRAM B

WORKSPACE A

WORKSPACE B

R13
R14
R15

Figure 4-11. 4fter Context Switch

Step 3. With the context switch completed, processing resumes with the first instruction
in the interrupt service routine.

Processing continues in this mode until, at the end of the interrupt routine, an RTWP
instruction is encountered. A "reverse" context switch now occurs to return to the
previous program. Since R13, 14 and 15 contain the control register contents for the
previous program, they are now transferred to the CPU which loads them into the WP,
PC and ST. Processing resumes from the point at which the interrupt occurred.

The obvious advantage of context switching is the reduced register-save register-restore
operations required by microprocessors in an interrupt environment. The context switch
is also used as a subroutine technique. This is described in Chapters 5 and 6, but the
important fact is that context switching is, to the designer, a single step, when in fact
several steps are performed by the microprocessor.

MEMORY

The 9900 is easily interfaced to any of the standard types of semiconductor memory
devices. Texas Instruments provides masked ROMs, field-programmable ROMs
(PROMs), and erasable PROMs (EPROMs) for non-volatile program and data storage.
RAMs are available in sizes from a 64 x 8 static RAM to the 64K dynamic RAMs for
use as a temporary program and data storage. 9900-compatible memory devices are
listed in Chapter 2.

4-12 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MEMORY
Architecture and
Interfacing Techniques

MEMORY ORGANIZATION

The 9900 instructions build a 16-bit address word which describes a 64K x 8 bit address

space. A memory map for the 9900 is shown in Figure 4-12.

AREA DEFINITION

MEMORY

ADDRESS16

MEMORY CONTENT

0 15

RESET VECTOR

INTERRUPT VECTORS

XOP SOFTWARE TRAP VECTORS

GENERAL MEMORY FOR

PROGRAM, DATA, AND

WORKSPACE REGISTERS

LOAD SIGNAL VECTOR

WP 	LEVEL 0 INTERRUPT

PC 	LEVEL 0 INTERRUPT

WP 	LEVEL 1 INTERRUPT

PC 	LEVEL 1 INTERRUPT

WP 	LEVEL 15 INTERRUPT

PC 	LEVEL 15 INTERRUPT

WP 	XOP 0

PC 	XOP 0

WP 	XOP 15

PC 	XOP 15

•

•

•

GENERAL MEMORY AREA

MAY BE ANY

COMBINATION OF

PROGRAM SPACE

OR WORKSPACE

•

•

WP 	LOAD FUNCTION

PC 	LOAD FUNCTION

0000

0002

0004

0006

003C

003E

0040

0042

007C

007E

0080

FFFC

FFFE

4 4

Figure 4-12. TMS 9900 Dedicated Memory Addresses

9900 FAMILY SYSTEMS DESIGN 	 4-13

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

► 4

RESET Vector

The first two memory words are reserved for storage of the RESET vector. The
RESET vector is used to load the new WP and PC whenever the CPU RESET signal
occurs. The first word contains the new WP, which is the starting address of the RESET
workspace. The second word contains the new PC, which is the starting address of the
RESET service routine.

Interrupt Vectors

The next thirty memory words, 0004 1, through 003E 16 are reserved for storage of the
interrupt transfer vectors for levels 1 through 15. Each interrupt level uses a word for
the workspace pointer (WP) and a word for the starting address of the service routine
(PC). If an interrupt -level is not used within a system, then the corresponding two
memory words can be used for program or data storage.

Software Trap Vectors

The next thirty-two memory words, 0040 16 through 007E 1 ,, are used for extended-
operation software trap vectors. When the CPU executes one of the 16 extended
operations (XOPs), the program traps through the corresponding vector. Two words are
reserved for each trap vector, with one word for the WP and one word for the PC. If an
XOP instruction is not used, the corresponding vector words can be used for program or
data storage.

LOAD Vector

The last two memory words FFFC 16 and FFFE,, are reserved for the LOAD vector,
with one word for the WP and one word for the PC. The LOAD vector is used
whenever the CPU LOAD signal is active (low).

Transfer Vector Storage

The transfer vectors can be stored either in ROM or RAM, but either the RESET or
LOAD vector should be in non-volatile memory and should point to a program in
non-volatile storage to ensure proper system start-up. The restart routine should
initialize any vector which is in RAM. The program can then manipulate the
RAM-based vectors to alter workspace assignments or service routine entry points,
while ROM-based vectors are fixed and cannot be altered.

4-14 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

MEMORY CONTROL SIGNALS

The 9900 uses three signals to control the use of the data bus and address bus during
memory read or write cycles. Memory enable (MEMEN) is active low during all
memory cycles.

Data bus in (DBIN) is active high during memory read cycles and indicates that the
CPU has disabled the output data buffers.

Write enable (WE) is active low during memory write cycles and has timing
compatible with the read/write (R/W) control signal for many standard RAMs.

Memory Read Cycle

Figure 4-13 illustrates the timing for a memory read machine cycle with no wait states.
At the beginning of the machine cycle, MEMEN and DBIN become active and the
valid address is output on AO-A14. DO-D15 output drivers are disabled to avoid
conflicts with input data. WE remains high for the entire machine cycle. The READY
input is sampled on 0 1 of clock cycle 1, and must be high if no wait states are desired.
Data is sampled on 0 1 of clock cycle 2, and set-up and hold timing requirements must be
observed. A memory-read cycle is never followed by a memory-write cycle, and DO-D15
output drivers remain disabled for at least one additional clock cycle.

Memory Write Cycle

Figure 4-14 illustrates the timing for a memory write machine cycle with no wait states.
MEMEN becomes active, and valid address and data are output at the beginning of the
machine cycle. DBIN remains inactive for the complete cycle. WE goes low on 0 1 of
clock cycle 1 and goes high on 0 1 of clock cycle 2, meeting the address and data set-up
and hold timing requirements for the static RAMs listed in Chapter 2. For no wait
states, READY must be high during 0 1 of clock cycle 1.

Read/Write Control with DBIN

In some memory systems, particularly with dynamic RAMs, it may be desirable to have
READ and WRITE control signals active during the full memory cycle. Figure 4-15
shows how the WRITE signal can be generated. Note that DBIN is high only for
READ cycles; therefore, MEMEN can be NORed with DBIN to yield a WRITE
signal which is high only during memory write operations.
Slow Memory Control

Although most memories operate with the 9900 at the full system speed, some memories
cannot properly respond within the minimum access time determined by the system
clock. The system clock could be slowed down in order to lengthen the access time but
the system through-put would be adversely affected since non-memory and other
memory reference cycles would be unnecessarily longer. The READY and WAIT
signals are used instead to synchronize the CPU with slow memories. The timing for
memory-read and memory-write cycles with wait states is shown in Figures 4-16 and 4-17.

44

9900 FAMILY SYSTEMS DESIGN 	 4-15

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

r
>- c)

O 	cc

1■.4.

z

2

Figure 4-13. Memory-Read Cycle Timing

4-16
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

CN

44

w 	"th 	IW 2

r 	> -
71. 	O 	

0

•tt

Figure 4-14. Memory-Write Cycle Timing

9900 FAMILY SYSTEMS DESIGN 	 4-17

MEMEN

DBIN
TMS 9900

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

READ

WRITE

Figure 4-15. Read/ Write Control Using MEMEN and DBIN

The READY input is tested on 0 1 of clock cycle 1 of memory-read and memory-write
cycles. If READY = 1, no wait states are used and the data transfer is completed on the

■ 4

	

	next clock cycle. If READY = 0, the processor enters the wait state on the next clock
cycle and all memory control, address, and data signals maintain their current levels. The
WAIT output goes high on 0 3 to indicate that a wait state has been entered. While in
the wait state, the processor continues to sample READY on 0 1, and remains in the wait
state until READY = 1. When READY = 1 the processor progresses to clock cycle 2
and the data transfer is completed. WAIT goes low on 0 3. It is important to note that
READY is only tested during 0 1, of clock cycle 1 of memory-read and memory-write
cycles and wait states, and the specified set-up and hold timing requirements must be
met; at any other time the READY input may assume any value. The effect of inserting
wait states into memory access cycles is to extend the minimum allowable access time by
one clock period for each wait state.

Wait State Control

Figure 4-18 illustrates the connection of the WAIT output to the READY input to
generate one wait state for a selected memory segment. The address decode circuity
generates an active low signal (SLOMEM = 0) whenever the slow memory is addressed.
For example, if memory addresses 80001 6 — FFFE 16 select slow memory,
SLOMEM = AO. If one wait state is required for all memory, WAIT may be connected
directly to READY, causing one wait state to be generated on each memory-read or
memory-write machine cycle. Referring again to Figures 4-16 and 4-17 note that the
WAIT output satisfies all of the timing requirements foe the READY input for a single
wait state. The address decode signal is active only when a particular set of memory
locations has been addressed. Figure 4-19 illustrates the generation of two wait states for
selected memory by simply delaying propagation of the WAIT output to the READY
input one clock cycle with a D-type flip-flop. The rising edge of 0 2TTL is assumed to
be coincident with the falling edge of the 0 2 clock input to the TMS 9900.

4-18 	 9900 FAMILY SYSTEMS DESIGN

IN
P

U
T

 M
O

D
E

4-1

IN
P

U
T

 M
O

D
E

V
A

L
ID

 A
D

D
R

E
S

S

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

n--
w
w

2

2

a 3
11.1
CC

Figure 4-16. Memory-Read Cycle With One Wait State

9900 FAMILY SYSTEMS DESIGN 4- 19

01

VALID ADDRESS

VALID WRITE DATA

a • •C Y• VA • •Y • • 3 1.••••Ae• DON'T CARE A • VAV
• A • A•A

• •
• AA

ADDRESS

TMS 9900
READY

ADDRESS

DECODE

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

-CLOCK CYCLE 1 	 WAIT STATE 	 CLOCK CYCLE 2 -0-1

02

03

IA

MEMEN

DBIN

WE

AO-A14

DO-D15

READY

WAIT

Figure 4-17. Memory-Write Cycle With One Wait State

Figure 4-18. Single Wait State for Slow Memory

4-20 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

Figure 4-19. Double Wait States for Slow Memory

Memory Access Time Calculation

Maximum allowable memory access time for the TMS 9900 can be determined with the
aid of Figure 4-20. Memory control and address signals are output on 0 2 of clock cycle 1,
and are stable 20 ns (tpLH, tpHL) afterwards. Data from memory must be valid 40 ns (tsu)
before the leading edge of 0 1 during clock cycle 2. Therefore, memory access time may
be expressed by the equation:

ta„ (1.75 + n) t e , tpLif — tr — tsu

where n equals the number of wait states in the memory-read cycle. Assigning worst-case
specified values for tp LH (20ns), tr (12ns), and t su (40 ns), and assuming 3 MHz
operation:

t 	(1 ' 75 n) 	72 ns acc
0.003

Access time is further reduced by address decoding, control signal gating, and address
and data bus buffering, when used. Thus, for a known access time for a given device, the
number of required wait states can be determined.

For example, a TMS 4042-2 RAM has a 450 nanosecond access time and does not
require any wait states. A TMS 4042 has a 1000 nanosecond access time and requires
two wait states. Propagation delays caused by address or data buffers should be added to
the nominal device access time in order to determine the effective access time.

4 4

9900 FAMILY SYSTEMS DESIGN 	 4-21

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

,t 	 111
— a 	z 	E
a 	ri 	a
< 	0 	o

Figure 4-20. Memory ilccess Timing Calculation

Csi

2
w
2
w
2

4-22 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MEMORY

STATIC MEMORY

Static RAMs and PROMs are easily interfaced to the 9900. A 9900 memory system
using the TMS 4042-2 256 X 4 static RAM and the TMS 2708 1K X 8 EPROM is
shown in Figure 4-21.

Address

The most-significant address bit, AO, is used to select either the EPROMs or the RAMs
during memory cycles. When AO is low, the EPROMs are selected, and when AO is
high, the RAMs are selected. Address lines Al through A4 are not used since the full
address space of the TMS 9900 is not required in the example. The lower address bits
select internal RAM or EPROM cells. Other memory systems can fully decode the
address word for maximum memory expansion.

Control Signals

Since DBIN is also used to select the EPROMs during memory-write cycles, the
EPROMs cannot inadvertently be selected and placed into output mode while the CPU
is also in the output mode on the data bus. MEMEN is used to select the RAMs during
either read or write cycles, and WE is used to select the read/write mode. DBIN is also
used to control the RAM output bus drivers.

The 9900 outputs WE three clock phases after the address, data, and MEMEN are
output. As a result, the address, data, and enable-hold times are easily met. WE is
enabled for one clock cycle and satisfies the minimum write pulse width requirement of
300 nanoseconds. Finally, WE is disabled one clock phase before the address, data, and
other control signals and meets the TMS 4042-2 50-nanosecond minimum data and address
hold time.

Loading

The loads on the CPU and memory outputs are well below the maximum rated loads. As
a result no buffering is required for the memory system in Figure 4-21. The TMS 4042-2
and the TMS 2708 access times are low enough to eliminate the need for wait states, and
the CPU READY input is connected to V cc.

The minimum high-level input voltage of the TMS 2708 is 3 volts while the maximum
high-output voltage for the TMS 9900 is 2.4 volts at the maximum specified loading.
For the system in Figure 4-21, the loads on the CPU and memory outputs are well below
the maximum rated load. At this loading, the TMS9900 output voltage exceeds 3 volts,
so pull-up resisters are not needed.

There are many other Texas Instruments static memories compatible with the TMS
9900. Most memory devices do not require wait states when used with the TMS 9900 at
3 MHz.

4 4

9900 FAMILY SYSTEMS DESIGN 	 4-23

MEMORY Hardware Design:
Architecture and
Interfacing Techniques

OCI

41. -LV

	C

st-zta>

21(e-Gc>

8 8'

Figure 4-21. TMS 9900 Static Memory System

4-24 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

DYNAMIC MEMORY

Memory applications requiring large bit storage can use 4K, 16K or 64K dynamic memories
for low cost, low power consumption, and high bit density. TMS 9900 systems requiring
4K words or more of RAM, can economically use the 4096-bit TMS 4051, the 16,384-
bit TMS 4116, or any of the other dynamic RAMs covered in Chapter 2.

Refresh

The dynamic RAMs must be refreshed periodically to avoid the loss of stored data. The
RAM data cells are organized into a matrix of rows and columns with on-chip gating to
select the addressed bit. Refresh of the 4K RAM cell matrix is accomplished by
performing a memory cycle of each of the 64 row addresses every 2 milliseconds or less.
The 16K RAM has 128 row addresses. Performing a memory cycle at any cell on a row
refreshes all cells in the row, thus allowing the use of arbitrary column address during refresh.

Refresh Modes

There are several dynamic memory refresh techniques which can be used for a TMS
9900 system. If the system periodically accesses at least one cell of each row every 2
milliseconds, then no additional refresh circuitry is required. A CRT controller which
periodically refreshes the display, illustrates this concept.

Refresh control logic is included wherever the system cannot otherwise ensure that all
rows are refreshed every 2 milliseconds. The dynamic memory in such TMS 9900
systems can be refreshed in the block, cycle stealing, or transparent mode.

Block Refresh.

The block mode of refresh halts the CPU every 2 milliseconds and sequentially refreshes
each of the rows. The block technique halts execution for a 128 (4K) or 256 (16K) clock
cycle periods every 2 milliseconds. Some TMS 9900 systems cannot use this technique
because of the possibility of slow response to priority interrupts or because of
the effect of the delay during critical timing or I/O routines.

Cycle Stealing.

The cycle stealing mode of refresh "steals" a cycle from the system periodically to
refresh one row. The refresh interval is determined by the maximum refresh time and
the number of rows to be refreshed. The 4K dynamic RAMs have 64 rows to be
refreshed every 2 milliseconds and thus require a maximum cycle stealing interval of
31.2 microseconds.

4 4

9900 FAMILY SYSTEMS DESIGN 	 4-25

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

A cycle stealing refresh controller for the TMS 4051 4K dynamic RAM is shown in
Figure 4-22. The refresh timer generates the refresh signal (RFPLS) every 30
microseconds. The refresh request signal (RFREQ) is true until the refresh cycle is
completed. The refresh grant signal (RFGNT) goes high during the next CPU clock
cycle in which the CPU is not accessing the dynamic memory. The refresh memory
cycle takes two clock cycles to complete after RFGNT is true. During the second clock
cycle, however, the CPU can attempt to access the dynamic memory since the CPU is
not synchronized to the refresh controller. If the CPU does access memory during the
last clock cycle of the refresh memory cycle, the refresh controller makes the memory
not-ready for the remainder of the refresh memory cycle, and the CPU enters a wait
state during this interval. The dynamic memory row address during the refresh memory
cycle is the output of a modulo-64 counter. The counter is incremented each refresh
cycle in order to refresh the rows sequentially.

The dynamic memory timing controller generates the proper chip enable timing for
.4 	both CPU and refresh initiated memory cycles. The timing controller can be easily

modified to operate with other dynamic RAMs.

Since the TMS 9900 performs no more than three consecutive memory cycles, the
refresh request will be granted in a maximum of three memory cycles. Some systems
may have block DMA, which uses HOLD. RFREQ can be used in such systems to
disable HOLDA temporarily in order to perform a refresh memory cycle if the DMA
block transfer is relatively long (greater than 30 microseconds). The cycle stealing mode
"steals" clock cycles only when the CPU attempts to access the dynamic memory during
the last half of the refresh cycle. Even if this interference occurs during each refresh
cycle, a maximum of 64 clock cycles are "stolen" for refresh every 2 milliseconds.

Transparent Refresh.

The transparent refresh mode eliminates this interference by synchronizing the refresh
cycle to the CPU memory cycle. The rising edge of MEMEN marks the end of a
memory cycle immediately preceding a non-memory cycle. The MEMEN rising edge
can initiate a refresh cycle with no interference with memory cycles. The refresh
requirement does not interfere with the system throughput since only non-memory
cycles are used for the refresh cycles. The worst-case TMS 9900 instruction execution
sequence (all divides) will guarantee the complete refresh of a 4K or 16K dynamic RAM
within 2 milliseconds.

4-26 	 9900 FAMILY SYSTEMS DESIGN

o o
Cr

O 10

IS

la

gc.
c.3

Cr

O

le IY

O 10

cc
	cc

O A

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

0
2 5
ri

Cr

z 	

ft'
6 is

—6 gc.

Cr

2

R
A

M
 A

D
D

R
E

S
S

 L
IN

E
S

44

4 4
Ift

O

cc rc

a

a 4

Cr

Cr

inc
It

	

It IZ Is it t 	, %
	 6 c4

0

.7 	

yz, •

Figure 4-22. Cycle-Stealing Dynamic RAM Refresh for TMS 4051

9900 FAMILY SYSTEMS DESIGN 	 4-27

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

While the transparent refresh mode eliminates refresh-related system performance
degradation, the system power consumption can be higher since the RAMs are refreshed
more often than required. As many as one-half of the CPU machine cycles can be refresh
cycles, resulting in multiple refresh cycles for each row during the refresh interval. This
situation can be corrected by adding a timer to determine the start of the refresh interval
and an overflow detector for the refresh row counter. When every row has been
refreshed during an interval, the refresh circuit is disabled until the beginning of the
next interval. Since each row is refreshed only once, the system power consumption is
reduced to a minimum.

Direct memory access using HOLD should guarantee that sufficient non-memory cycles
are available for refresh during large block transfers. An additional refresh timer can be
used to block HOLDA in order to provide periodic refresh cycles.

BUFFERED MEMORY

4 	The TMS 9900 outputs can drive approximately two standard TTL inputs and 200
picofarads. Higher capacitive loads may be driven, but with increased rise and fall times.
Many small memory systems can thus be directly connected to the CPU without buffer
circuits. Larger memory systems, however, may require external bipolar buffers to drive
the address or data buses because of increased loading. Texas Instruments manufactures a
number of buffer circuits compatible with the TiVIS 9900. The SN74LS241
noninverting-octal buffer with three-state outputs is an example of a buffer circuit.

A TMS 9900 memory system with address and data bus buffering is shown in Figure 4-
23. The system consists of sets of four 256 X 4 memory devices in parallel to provide the
16-bit data word. The four sets of four devices provide a total of 1024 words of memory.
The memory devices can be the TMS 4042-2 NMOS static RAM.

The SN74S412 octal buffer/latch is designed to provide a minimum high-level output
voltage of 3.65 V. Buffered TMS 9900 memory systems containing the TMS 4700
ROM or the TMS 2708 EPROM, for example, require input voltages in excess of the
output voltages of many buffer circuits. The SN74S412 can be used to buffer the
memories without the pull-up resistors needed for buffers.

MEMORY PARITY

Parity or other error detection/correction schemes are often used to minimize the
effects of memory errors. Error detection schemes such as parity are used to indicate the
presence of bad data, while error correction schemes correct single or multiple errors.

4-28 	 9900 FAMILY SYSTEMS DESIGN

4i

a a

a

a

6 Q • •

A
7
B

-
A

1
4

8

01

›-

a

a

r•f

a
 O

6 	.

a

7

12 2,

j
♦

8

6 Q • 	 U Q •

a

a
a

a

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

a
a

Cy Z 6 a .

Figure 4-23. Buffered Memory with Mixed PROM/ ROM

9900 FAMILY SYSTEMS DESIGN
	

4-29

MEMORY
	

Hardware Design:
Architecture and
Interfacing Techniques

The SN74LS280 parity generator/checker can be used to implement memory parity in
a TMS 9900 system. The system in Figure 4-24 uses two SN74LS280 circuits to
generate and to check the odd-memory parity. During memory write cycles, the
generated parity bit is output to bit D16 of the memory. During memory read cycles,
the parity is checked and an interrupt, PARERR, is generated if the parity is even.

It should be noted that the faulty memory word will have already been used by the CPU
as an op code, address, or data before the interrupt is generated. This can cause trouble
in determining the exact location of the error. For example, an error in bit 8 of the CLR
op code will cause the CPU to branch unconditionally. When the interrupt is serviced,
there would then be no linkage to the part of the program at which the error occurred.
A diagnostic routine can often isolate such errors by scanning the memory and checking
parity under program control. Such a parity error in the diagnostic itself can be
extremely difficult to isolate.

■ 4 	An external address latch clocked at IAQ can be used to retain program linkage under
the above circumstances. When the parity error is detected, the address latch is frozen,
thus pointing to the address of the instruction during which the parity error occurred.

MEMORY LAYOUT

It is generally advantageous to lay out memory devices as arrays in the system. The
advantages are twofold. First, positioning the devices in an orderly fashion simplifies
identification of a particular memory element when troubleshooting. Second, and most
important, layout of memory arrays simplifies layout, shortens interconnections, and
generally allows a more compact and efficient utilization of board space. Crosstalk
between adjacent lines in memory arrays is minimized by running address and data lines
parallel to each other, and by running chip enable signals perpendicular to the address
lines.

Memory devices, particularly dynamic RAMs generally require substantially greater
supply currents when addressed than otherwise. It is therefore important that all power
and ground paths be as wide as possible to memory arrays. Furthermore, in order to
avoid spikes in supply voltages, it is advisable to decouple supply voltages with capacitors
as close as possible to the pins of the memory devices. As an example, a system
containing a 4K x 16-bit array of TMS 4051s should contain one 15 tF and one 0.05 p.F
capacitor for each set of four memory devices; with the large capacitors decoupling VDD,
and the small capacitors decoupling VBB.

4-30 	 9900 FAMILY SYSTEMS DESIGN

>-
cc
c:/
2
w
2

Hardware Design:
	 MEMORY

Architecture and
Interfacing Techniques

co
o

10

0
D--

•N
O

 W
A

IT
 S

T
A

T
E

S

In
4-

44

a

IC

.11

)
ca

S
N

7
4L

S
2

8
0

z
Lu
>
w

z
o 	 cli
o 	 f:t
cn
im 	D

o. cn 	o
2
I—

1-
0. -I
D 0 u
CC CC -
CC I- Ci
w Z 0
I- 0 -I
2 0

Figure 4-24. Memory Parity Generator Checker

9900 FAMILY SYSTEMS DESIGN 	 4-31

INSTRUCTION EXECUTION
	

Hardware Design:
Architecture and
Interfacing Techniques

■ 4

INSTRUCTION EXECUTION

Execution time for an instruction is a function of the clock frequency, the number of
clock cycles, the number of memory accesses and the number of wait states if required
for slower memories. The following tables list the number of clock cycles required to
execute each instruction if no wait states are required. The number of memory accesses
is also given so that the extra clock cycles can be calculated for the number of wait states
required. A wait state is entered when the ready signal from the memory does not go
high within one clock period after initiation of a memory cycle. For example: The clock
frequency for the TMS 9900 is 3 MHz. From the calculation of maximum access time
for no wait states, the memory access time must be less than 512 ns. One wait state (of
333 ns duration) will be required for memories with access times between 512 ns and
845 ns, two wait states will be required if the access time is between 845 ns and 1.178
sec, and so on.

TIMING

From Figure 4-25, the first execution time table, an add instruction (A) using direct
register addressing for both operands requires 14 clock cycles if there are no wait states
required. For other addressing modes, the number of clock cycles increases to a
maximum of 30. If the memory requires one wait state per access, an additional four
clock periods will be required since there are four memory cycles in the execution of an
add instruction. For the TMS 9900 running at 3 MHz, 14 clock periods will take 4.667
microseconds; 30 clock periods will take 10.0 microseconds. The number of memory
cycles is from 4 up to 8 depending upon addressing mode (3 to 7 for compare, C). Use
the tables in the following manner. Assuming one wait state, a clock frequency of 3
MHz, and an instruction with complex addressing, the tables can be used to determine
the execution time for the instruction

A *R1, @ LIST

is 26 clock cycles for fetch and execution and 6 clock cycles for wait states, or 32 x .333
microseconds which is 10.667 microseconds.

Figures 4-26, 27 and 28 give the rest of the execution time data, always by number of
clock cycles (assuming no wait states) and memory cycles. Execution times for
instructions which do not use the five general addressing modes may be found in Chapter
8 in the CPU section.

4-32 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 INSTRUCTION EXECUTION

Architecture and
interfacing Techniques

INSTRUCTIONS A, Ct, S, SOC, SZC, MOV

Destination
Address

Source Address

R "R *R + @LIST @TABLE (R)

R 18 22
I'R 22 26

Clock *R +

C
o

C
o

 26

O

CO

O

CO
 30

Cycles @LIST 26 30
@TABLE (R) 26 30

6
7

Memory *R +

C
O

N
-

O

N
- 8

Cycles @LIST 7
@TABLE (R) 8

tMemory
R

IIIR

O
 C

O
 N

- C
O

CO

Cycles
for C
instr.

'IR +
@LIST

@TABLE (R)
C

O
 -,1- 1

1
)

CO
 C

O

LO
 0

)
0
)
 --

,1 C
O

 L
O

h
-

Figure 4-25.

INSTRUCTIONS: AB, CBtt, SB. SOCB, SZCB, MOVB

Destination
Address

Source Address

R *R *R + @LIST @TABLE (R)

R 14 18 1 22
*A 18 22 26

Clock *R + 20 24

CO

C
o

C
o

C
o

 28
Cycles @LIST 22 26 28

@TABLE (R) 22 26 28

R 6
*R 7

Memory '''R +

CO

h-

CO

h
- 8

Cycles @LIST 7
@TABLE (R) 8

R

'I' C
O

 C
O

 C
O

 C
O

5
t tMemory *R 6

Cycles *R +

C
O

C
O

N
 7

for CB @LIST 6
instr. @TABLE (R) 7

Figure 4-26.

44

9900 FAMILY SYSTEMS DESIGN
	

4-33

■ 4

INSTRUCTION EXECUTION Hardware Design:
Architecture and
Interfacing Techniques

INSTRUCTIONS LDCR, STCR

LIJI.;11

Addressing
Mode

Bit Count, C

1 2 3 4 	5 6 7 8 9 10 11 12 13 14 15 0

R 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52
*R 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56

Clock *R + 28 30 32 34 36 38 40 42 46 48 50 52 54 56 58 60
Cycles @LIST 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

@TABLE (A) 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

R 3 3
R 4 4

Memory *R + 5 5
Cycles @LIST 4 4

@TABLE (R) 5 5

SIGH
Addressing

Mode

Bit Count, C

1 2 3 4 	5 6 7 8 9 10 11 12 	13 14 15 0

R 42 42 42 42 42 42 42 44 58 58 58 58 58 58 58 60
*R 46 46 46 46 46 46 46 48 62 62 62 62 62 62 62 64

Clock *R + 48 48 48 48 48 48 48 50 66 66 66 66 66 66 66 68
Cycles @LIST 50 50 50 50 50 50 50 52 66 66 66 66 66 66 66 68

@TABLE (R) 50 50 50 50 50 50 50 52 66 66 66 66 66 66 66 68

R 4 4
- R 5 5

Memory *R 6 6
Cycles @LIST 5 5

@TABLE (R) 6 6

Figure 4-27.

4-34 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

INSTRUCTION EXECUTION
Architecture and
Interfacing Techniques

Clock Cycles Memory Cycles

Instruction R ll'R *R + @LIST, @TABLE (R) R ll`R *R + @LIST @TABLE (R)

ABS MSB = 0 20 20

'C
r L

f)
'C

r L
r) C

O
 1

.0
 L

r) L
O

 L
O

 L
O

 L
ID

 L
O

 L
O

LO

 O
D

 C
D

MSB = 1 22 22
B 16 16
BL 20 20
BLWP 34 34
CLR 18 18
DEC 18 18
DECT 18 18
INC

0

.7r

C
O

 18 18

C
O

•7r

LC)

,r

INCT 18 18
INV 18 18
NEG 20 20
SETO 18 18
SWPB 18 18
XOP 44 44
XOR 22 22

Figure 4-28.

CYCLIC OPERATION

An example of a machine cycle sequence is illustrated in Figure 4-29. For an add
instruction the machine cycles alternate between memory cycles and ALU cycles. The
first cycle is always a memory read cycle to fetch the instruction and the second is always
an ALU cycle to decode the instruction. Each machine cycle requires two clock cycles,
thus the 7 machine cycles shown for the add instruction require 14 clock cycles.

A R1, R2

1 Memory Read Instruction Fetch
2 ALU Decode Opcode
3 Memory Read Fetch (WR1)
4 ALU Set Up
5 Memory Read Fetch (WR2)
6 ALU Addition
7 Memory Write Store Result in WR2 and

Increment PC

Figure 4-29. Machine Cycles for an ildd Instruction

41

9900 FAMILY SYSTEMS DESIGN 	 4-35

INSTRUCTION EXECUTION
	

Hardware Design:
Architecture and
Interfacing Techniques

■ 4

The 9900 performs its functions under control of a 4-phase clock and, fundamentally,
performs instruction fetch and execution cycles. Figure 4-30 illustrates the step-by-step
procedure the 9900 use to execute an add instruction. From previous cycles, the
workspace pointer has been loaded with the number 0800, and the program counter
contains the number 0100.

Step 1. The first step in any instruction cycle is to fetch the instruction. This is
accomplished by gating the content of the program counter into the memory address
register. The output of the memory address register is the address bus which is
connected to the memory. In this case, word number 0100 is read from the memory and
placed in the instruction register on the 9900 chip. From this point, the ones and zeros
of the instruction register control the sequence of microcode stored in the microcontrol
read only memory on the 9900 chip. These microsteps become the execution phase of
the instruction.

Step 2. At this point, the microcontrol shifts to the execution of an add instruction; the
first operand must be obtained from memory. In order to do this, the workspace pointer
and a portion of the instruction word (the source operand register number) are added
together via the ALU and placed in the memory address register.

Step 3. The address 0802 is the result (in this example), and being supplied to the
memory produces on the data bus the content of memory word 0802 which is the binary
equivalent of 25. This number must be stored in a temporary register on the 9900 chip,
in this case the T1 register.

Step 4. Now a second operand must be fetched. Again the workspace pointer is added to
the content of that portion of the instruction word which is the destination register
identifier. The sum of these two is 0804 for register two, and this number is placed in
memory address register and goes out on the address bus.

Step 5. Memory word 0804 is read and the number 10 is brought into the 9900 chip.
The register which stores the second operand is called the source data register or S
register.

Step 6. At this point the two operands have been loaded into registers on the 9900 chip
and may be added by the ALU to produce the result. Register T1 containing 25 is added
to the register S which contains 10 and the sum, 35, replaces the 10 in the S register and
is placed on the data bus via the S register.

Step 7. The address bus still contains the number 0804 which was the address of the
second operand and is the location in memory where the result is to be stored. So at this
point in the cycle, a memory write cycle is initiated and the binary equivalent of 35 is
stored in memory location 0804. At the conclusion of this memory cycle the program
counter is incremented by two to point to the next sequential memory word, which is the
instruction to be executed next.

4-36 	 9900 FAMILY SYSTEMS DESIGN

WP
	

IR

1010 00 0010 00 0001

CYCLE 2

SET-UP

Hardware Design:
Architecture and
Interfacing Techniques

INSTRUCTION EXECUTION

PC

CPU MEMORY

MAR 	 INSTRUCTION

1010 0000 1000 0001 0100,, 	 010016

CYCLE 1

FETCH

INSTRUCTION

1010 00 0010 00 0001

INSTR. REGISTER

Figure 4-30a. Add Instruction Cycle

44

9900 FAMILY SYSTEMS DESIGN 	 4-37

0025,,

0000 0000 0010 0101 0802, 6

INSTRUCTION EXECUTION
	

Hardware Design:
Architecture and
Interfacing Techniques

CPU
	

MEMORY

MAR 	 OPERAND

► 4

CYCLE 3:

FETCH

FIRST

OPERAND

T1

WP 	 IR

1010 00 0010 00 0001

X2

080016

CYCLE 4 ,

SET-UP

ALU

MAR

0804,,

Figure 4-30b. field Instruction Cycle

4-38 	 9900 FAMILY SYSTEMS DESIGN

0000 0000 0011 0101 0804,,

Hardware Design:
Architecture and
Interfacing Techniques

INSTRUCTION EXECUTION

CPU

MEMORY

MAR OPERAND

CYCLE 5

FETCH

SECOND

OPERAND

0804,6 0000 0000 0001 0000

0010,,

CYCLE 6'

ADD

T1 S (BEFORE)

0025, 0010,6

\?
ALU

S (AFTER) 0035, 6

PC MAR RESULT

41

0102,,

0035,,

CYCLE 7

STORE

RESULT

S

Figure 4-30c. Add Instruction Cycle

9900 FAMILY SYSTEMS DESIGN 4-39

INSTRUCTION EXECUTION
	

Hardware Design:
Architecture and
Interfacing Techniques

4

After all steps have been done, the processor checks to see if there is any pending
interrupt operations to be performed and, if not, fetches the next instruction and the
cycle continues. In the event that an interrupt signal were present, the processor would
proceed to the appropriate interrupt service routine and continue execution from that
point. Interrupts are described in detail in a special section of this chapter.

Each operation performed by the 9900 consists of a sequence of machine cycles. In each
machine cycle the processor performs a data transfer with memory or with CRU and/or
an arithmetic or logical operation internally with the ALU. A detailed discussion of the
machine cycles for each instruction is included at the end of the chapter.

Each ALU machine cycle is two clock cycles long. In an ALU cycle no external data
transfer occurs, but the ALU performs an arithmetic or logical operation on two
operands contained internally. The function of the memory read cycle is to transfer a
word of data contained in the memory to the processor. An ALU operation may be
performed during the memory read cycle. Memory read cycles are a minimum of two
clock cycles long. The memory write cycle is identical to the memory read cycle except
that data is written rather than read from memory.

Each CRU output machine cycle is two clock cycles long. In addition to outputting a bit
of CRU data, an ALU operation may also be performed internally. The CRU input
cycle is identical to the CRU output cycle except that one bit of data is input rather than
output.

Machine Cycle Limits

Table 4-1 lists information which will be useful for system design. The maximum number
of consecutive memory-read cycles is used to calculate the maximum latency for the
TMS 9900 to enter the hold state since the hold state is only entered from ALU, CRU
input, or CRU output machine cycles. The minimum frequency of consecutive memory /
non-memory cycle sequences occurs when the DIV instruction is executed. This number
is used to ensure that the refresh rate meets specifications when the transparent-refresh
mode described in the memory section is used since memory is refreshed in this mode
each time an ALU or CRU cycle follows a memory cycle. Figure 4-31 shows the logic to
generate a pulse for each memory access cycle. Consecutive cycle timing is shown in

Figure 4-32.

4-40 	 9900 FAMILY SYSTEMS DESIGN

MEMEN

c;42TTL

WAIT

MEMO,

Figure 4-31. Memory Cycle Pulse Generation

04TTL

MEMEN
	 X 	

READY

OW.
WAIT

MEMCY

Hardware Design:
	

INSTRUCTION EXECUTION
Architecture and
Interfacing Techniques

Table 4-1. Machine Cycle Limits

MINIMUM MAXIMUM
Consecutive Memory Read Cycles 	 1 	 3
Consecutive Memory Write Cycles 	 1 	 1
Consecutive ALU Cycles 	 1 	 51
Consecutive CRU Cycles 	 1 	 16

Frequency of Consecutive 	 S pairs
memory/non-memory cycle 	 (64 machine
pairs (used for transparent 	 cycles during
refresh) 	 DIV.)

VCC

Figure 4-32. Memory Cycle Pulse Timing

9900 FAMILY SYSTEMS DESIGN
	

4-41

ADDRESS BUS 	1.
15

MEMORY

MAPPED

I/O

SYSTEM

MEMORY

CRUIN

CRU 	'C
RLK

4CRUOUT

DMA

TMS 9900

DATA BUS

DMA CONTROL 16

INPUT/OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

INPUT/OUTPUT

The 9900 has three I/O modes: direct memory access (DMA), memory mapped, and
communications register unit (CRU). This multi-mode capability enables the designer to
optimize a 9900 I/O system to match a specific application. One or all modes can be
used, as shown in Figure 4-33.

• COMMUNICATIONS REGISTER UNIT • CRU

• MEMORY MAPPED I/O

• DIRECT MEMORY ACCESS • DMA

Figure 4-33. 9900 I/O Capability

DIRECT MEMORY ACCESS

DMA is used for high-speed block data transfer when CPU interaction is undesirable or
not required. The DMA control circuitry can be relatively complex and expensive when
compared to other I/O methods. However, a special interface device, the TMS 9911, is
available for DMA control. This device is described in Chapter 8.

The 9900 controls CRU-based I/O transfers between the memory and peripheral
devices. Data must pass through the CPU during these program-driven I/O transfers,
and the CPU may need to be synchronized with the I/O device by interrupts or status-
bit polling.

Some I/O devices, such as disk units, transfer large amounts of data to or from memory.
Program driven I/O can require relatively large response times, high program
overhead, or complex programming techniques. Consequently, direct memory access
(DMA) is used to permit the I/O device to transfer data to or from memory without
CPU intervention. DMA can result in a high I/O response time and system throughput,
especially for block data transfers. The DMA control circuitry is somewhat more
expensive and complex than the economical CRU I/O circuitry and should therefore be
used only when required.

4-42 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 INPUT/OUTPUT

Architecture and
Interfacing Techniques

The 9900-based DMA can occur in the same modes as dynamic memory refresh: block,
cycle stealing, or transparent. The transparent DMA mode is implemented similar to the
refresh mode and must be synchronized with memory refresh cycles if dynamic memory
is used. The block and cycle stealing modes, however, use the CPU HOLD capability

-111.1k

and are more commonly used. The I/O device holds HOLD active (low) when a DMA
transfer needs to occur. At the beginning of the next available non-memory cycle, the
CPU enters the hold state and raises HOLDA to acknowledge the HOLD request. The
maximum latency time between the hold request and the hold acknowledge is equal to
three clock cycles plus three memory cycles. The minimum latency time is equal to one
clock cycle. A 3-megahertz system with no wait cycles has a maximum hold latency of
nine clock cycles or 3 microseconds and a minimum hold latency of one clock cycle or
0.3 microseconds.

When HOLDA goes high, the CPU address bus, data bus, DBIN, MEMEN, and WE
are in the high-impedance state to allow the I/O device to use the memory bus. The I/O
device must then generate the proper address, data, and control signals and timing to
transfer data to or from the memory as shown in Figure 4-34. Thus the DMA device has
control of the memory bus when the TMS 9900 enters the hold state (HOLDA = 1),
and may perform memory accesses without intervention by the microprocessor. Since
DMA operations, in effect remove the 9900 from control while memory accesses are 0E1.

being performed, no further discussion is provided in this manual. Because the lines
shown in Figure 4-34 go into high impedance when HOLDA = 1, the DMA controller
must force these signals to the proper levels. The I/O device can use the memory bus
for one transfer (cycle-stealing mode) or for multiple transfers (block mode). At the end
of the DMA transfer, the I/O device releases HOLD and normal CPU operation
proceeds. The 9900 HOLD and HOLDA timing are shown in Figure 4-35.

MEMORY MAPPED I/O

Memory mapped I/O permits I/O data to be addressed as memory with parallel data
transfer through the system data bus. Memory mapped I/O requires a memory bus
compatible interface; that is, the device is addressed in the same manner as a memory,
thus the interface is identical to that of memory. Figure 4-36 shows a memory mapped I/O
interface with eight latched outputs and eight buffered inputs. In using memory
mapped I/O for output only, care must be taken in developing the output device strobe
to ensure it is not enabled during the initial read of the memory address, since the 9900
family of processors first reads, then writes data to a memory location in write
operations. This can be effectively accomplished by using the processor write control
signal WE in decoding the output address.

41

9900 FAMILY SYSTEMS DESIGN
	

4-43

INPUT/OUTPUT
	

Hardware Design:
Architecture and
Interfacing Techniques

CRU

AO-A14

00-015

MEMEN

DBIN SYSTEM

MEMORY

WE

WAIT

READY

TMS 9900

HOLD
REQUEST

/\

ADDRESS DATA MEMEN DBIN WE

HOLDA GRANT
DMA 3-STATE 	 CONTROL

DMA CONTROLLER

Figure 4-34. DMA Bus Control

41

02

.3

IITERER

A0411

00-D15

ORIN

READ

WAIT

HOLOA

HOLD

HI

	I I 	 I

1.111---- max 9 TV CLOCK -1.4

Figure 4-35. HOLD and HOLDA Timing

4-44 	 9900 FAMILY SYSTEMS DESIGN

SN74LS244

1G 	2G

Hardware Design:
Architecture and
Interfacing Techniques

INPUT/OUTPUT

WE

DBIN

DEVSEL

'A SN74LS139

	 A 	0 D 	

0

2 D

3 D-

1Y1-1Y4, 1A1-1A4,

2Y1.2Y4 2A1-2A4
8 BUFFERED INPUTS

SN74LS374

1D-8D 	1Q-8Q
	 8 LATCHED AND
	 BUFFERED OUTPUTS

D0-D7

44

FROM

TMS 9900

ADDRESS
DECODE

Figure 4-36. 8-Bit Memory Mapped I/O Interface

COMMUNICATION REGISTER UNIT (CRU)

CRU I/O uses a dedicated bit addressable interface for I/O. The CRU instructions permit
transfer of one to sixteen bits. The CRU interface requires fewer interface signals than
the memory interface and can be expanded without affecting the memory system. In the
majority of applications, CRU I/O is superior to memory mapped I/O as a result of the
powerful bit manipulation capability, flexible field lengths, and simple bus structure.

The CRU bit manipulation instructions eliminate the masking instructions required to
isolate a bit in memory mapped I/O. The CRU multiple-bit instructions allow the use of
I/O fields not identical to the memory word size, thus permitting optimal use of the
I/O interface. Therefore, the CRU minimizes the size and complexity of the I/O
control programs, while increasing system throughput.

The CRU does not utilize the memory data bus. This can reduce the complexity of
printed circuit board layouts for most systems. The standard 16-pin CRU I/O devices

from. are less expensive and easier to insert than larger, specially designed, memory mapped
I/O devices. The smaller I/O devices are possible as a result of the bit addressable CRU
bus which eliminates the need for multiple pins dedicated to a parallel-data bus with
multiple control lines. System costs are lower because of simplified circuit layouts,
increased density, and lower component costs.

9900 FAMILY SYSTEMS DESIGN 	 4-45

INPUT/OUTPUT
	

Hardware Design:
Architecture and
Interfacing Techniques

CRU Interface

The interface between the 9900 and CRU devices consists of address bus lines AO-A14,
and the three control lines, CRUIN, CRUOUT, and CRUCLK as shown in Figure 4-33.
A0-A2 indicate whether data is to be transferred and A3-A14 contain the address of the
selected bit for data transfers; therefore, up to 2 12 or 4,096 bits of input and 4,096 bits of
output may be individually addressed. CRU operations and memory-data transfers both
use AO-A14; however, these operations are performed independently, thus no conflict
arises. The MEMEN line may be used to distinguish between CRU and memory cycles.

CRU Interface Logic

CRU based I/O interfaces are easily implemented using either CRU peripheral devices
such as the TMS 9901 or the TMS 9902, or TTL multiplexers and addressable latches,
such as the TIM 9905 (SN74LS251) and the TIM 9906 (SN74LS259). These I/O
circuits can be easily cascaded with the addition of simple address decoding logic.

■ 4 	TTL Outputs. The TIM 9906 (SN74LS259) octal-addressable latch can be used for
CRU outputs. The latch outputs are stable and are altered only when the CRUCLK is
pulsed during a CRU output transfer. Each addressable latch is enabled only when
addressed as determined by the upper address bits. The least-significant address bits
(Al2-A14) determine which of the eight outputs of the selected latch is to be set equal to
CRUOUT during CRUCLK, and shown in Figure 4-37.

MEMORY

\<(/'

ABC

A0-A 14

ABC 0

SN74LS138
6

G1 	 7 3 	

G2A G813

OTHER
CRU

OUTPUT
CIRCUITS

Q0

Q1

02
SN741
ITIM • • 	03

Q4

O 	 Q5

CLEAR 	06

Q7

CRUCLK

TMS 9900

L
A

T
C

H
E

D

O

U
T

P
U

T
S

CRUOUT

RESET 0 	

RESET

Figure 4-37. Latched CRU Interface

4-46
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INPUT/OUTPUT

MEMORY

S

SN74LS151
OR

SN74. ."
(TIM U.Nn..

co a.

r

Figure 4-38. Multiplexer CRU Interface

TTL Inputs. The SN74LS151 and TIM 9905 (SN74LS251) octal multiplexers are used
for CRU inputs as shown in Figure 4-38. The multiplexers are continuously enabled with
CRUIN equal to the addressed input. The TIM 9905 should be used for larger systems
since its three-state outputs permit simple "wire-ORing" of parallel-input multiplexers.

Expanding CRU I/O

A CRU interface with eight inputs and eight outputs is shown in Figure 4-39 using the
TMS 9901. An expanded interface with 16 inputs and 16 outputs is shown in Figure 4-
40 using TTL devices. The CRU inputs and outputs can be expanded up to 4096 inputs
and 4096 outputs by decoding the complete CRU address. Larger I/O requirements can
be satisfied by using memory mapped I/O or by using a CRU bank switch, which is set
and reset under program control. When reset, the lower CRU I/O bank is selected, and
when set, the upper CRU I/O bank is selected. In actual system applications, however,
only the exact number of interface bits required need to be implemented. It is not
necessary to have a 16-bit CRU output register to interface a 10-bit device.

CRU Machine Cycles

Each CRU operation consists of one or more CRU output or CRU input machine cycles,
each of which is two clock cycles long. As shown in Table 4-2, five instructions (LDCR,
STCR, SBO, SBZ, TB) transfer data to or from the 9900 with CRU machine cycles, and
five external control instructions (IDLE, RSET, CKOF, CKON, LREX) generate
control signals with CRU output machine cycles.

44

9900 FAMILY SYSTEMS DESIGN 	 4-47

cc
cc
0
2
2

N

\

ABC

SN741
(TIM 1.4.•

0

G

SN74I •
(TIM I'M

00

All

N

v.Y

INPUT/OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

CRUCLK

CRUOUT

CRUIN

TMS 9900

A10.4.14

CE

.11

INTERRUPT I/F

■ 4
RESET

TMS 9901

0 	 7 	 0 	 7

t 	 f

INTERRUPTS (6)

8 INPUTS
	

8 OUTPUTS

Figure 4-39. 8-Bit CR U Interface

:Tt
N All

O

ADDRESS

CRUIN

CRUOUT

CRUCLK

TMS 9900
CPU

(41

All

07

G

SN741 	..•
(TIM •.•PIO

QO 	 Q7

i J

ABC

Pri '41,

0

INPUTS 	 INPUTS 	 OUTPUTS 	 OUTPUTS

8-15 	 0-7 	 0-7 	 8-15

Figure 4-40. 16-Bit CR U Interface

4-48 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

INPUT/OUTPUT
Architecture and
Interfacing Techniques

Table 4-2. Instructions Generating CRU Cycles

ON
NUMBER OF
CRU CYCLES

TYPE OF
CRU CYCLES

A0-A2
DATA

TRANSFER

LDCR

S
O

`
c

v
.

.--
I
 .-

-
■
,
-
I
 .
-
-
1
 ,
-
-
I
 .--I

,---I
 r
-
4

 ,-
I

I 	
I

11
-4

■-

■

Output 0 0 0 Yes
STCR Input 0 0 0 Yes
SBO Output 0 0 0 Yes
SBZ Output 0 0 0 Yes
TB Input 0 0 0 Yes
IDLE Output 010 No
RSET Output 011 No
CKOF Output 101 No
CKON Output 110 No
LREX Ouput 1 	1 	1 No

Figure 4-41 shows the timing for CRU output machine cycles. Address (A0-A14) and
data (CRUOUT) are output on 42 of clock cycle 1. One clock cycle later, the 9900
outputs a pulse on CRUCLK for 1/2 clock cycle. Thus, CRUCLK can be used as a strobe,
since address and data are stable during the pulse. Referring again to Table 4-2, it is
important to note that output data is transferred only when A0-A2 = 000. Otherwise, no
data transfer should occur, and A0-A2 should be decoded to determine which external
control instruction is being executed. These external control instructions may be used to
perform simple control operations. The generation of control strobes for external
instructions and a data transfer strobe (OUTCLK) is illustrated in Figure 4-42. If none
of the external control instructions is used, A0-A2 need not be decoded for data transfer
since they will always equal 000.

41

01

02

03

CLOCK

CYCLE 1

CLOCK

CYCLE 2

04

AO - A14)(1. RI. BIT 41.1 , itl-Ns n

CRUCLK

O
P

E
 R

A
T

IO
N

a.
a.

0

CRUOUT DI(CRI I DATA OUT n

Figure 4-41. CRU Output Machine Cycle Timing

9900 FAMILY SYSTEMS DESIGN 	 4-49

CRUCLK

G2A 	G2B

Y7
A

Y6
C

Y5

SN74LS139 	Y3

Y2

G1 	 YO

LREX

CKON

FTST—T-

OUTCLK (TO CRU)

15

AO-A14 	 A0-A2

TMS 9900

INPUT/OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

TO MEMORY AND CRU

Figure 4-42. CRU Control Strobe Generation

The timing for CRU input machine cycles is shown in Figure 4-43. The address is output
at the beginning of the first clock cycle. The CRUIN data input is sampled on 01 of
clock cycle 2. Thus, CRU input is accomplished by simply multiplexing the addressed bit
onto the CRUIN input. A0-A2 will always be 000, and may be ignored. CRU input
machine cycles cannot be differentiated from ALU cycles by external logic, thus no
operations (such as clearing interrupts) other than CRU input should be performed
during CRU input machine cycles.

CLOCK

CYCLE 1

CLOCK

CYCLE 2

03

IA

AO - A14 	x CRU ADDRESS m

I-
D
a.

O
P

E
R

A
T

IO
N

CRUIN
INPU1 VALID
INPUT BIT m

Figure 4-43. CRU Input Machine Cycle Timing

4-50 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

INPUT/OUTPUT
Architecture and
Interfacing Techniques

4111.,

CRU Data Transfer

In order to transfer data from a memory location to an external latch in the
Communications Register Unit, or to transfer data from a CRU multiplexer to memory,
special instructions must be used. The CRU instructions are:

SBO 	Set bit to one (output)
SBZ 	Set bit to zero (output)
TB 	 Test bit (input)
LDCR 	Load n bits to CRU (output)
STCR 	Receive n bits from CRU (input)

These instructions always use the address bus to identify the bit or bits to be transferred,
but they make the actual transfer of data over the dedicated CRU lines, CRUIN and
CRUOUT. Addressing of the CRU bits is accomplished by adding a portion of the
instruction word to a CRU base address register. The use of such a base address
technique allows one program segment to service any number of identical I/O devices.
For example: five TMS 9902's each with its own assigned base address can be
operated from a single program, provided the base address register is properly set at the
beginning. In the 9900, workspace register 12 is the CRU software base address register.
All CRU instructions use the contents of this register in addressing individual CRU bits.

The CRU hardware base address is defined by bits 3-14 of the current WR12 when
CRU data transfer is performed. Bits 0-2 and bit 15 of WR12 are ignored for CRU
address determination.

For single-bit CRU instructions (SBO, SBZ, TB), the address of the CRU bit to or from
which data is transferred is determined as shown in Figure 4- 44. Bits 8-15 of the machine
code instruction contain a signed displacement. This signed displacement is added to the
CRU hardware base address (bits 3-14 of W R12). The result of this addition is output
on A3-A14 during the CRU output or the CRU input machine cycle.

For example, assume the instruction "SBO 9" is executed when WR12 contains a value
of 1040, 6. The machine code for "SBO 9" is 1D09 16 and the signed displacement is
0009, 6 . The CRU hardware base address is 0820 16 (bits 0-2 and bit 15 are ignored).
Thus, the effective CRU bit address is 0820 16 + 0009, 6 = 0829,6 , and this value is output on

AO-A14 during the CRU output machine cycle.

As a second example, assume that the instruction TB — 32 is executed when
WR12 = 100, 6 . The effective CRU address is 80,6 . (CRU hardware base) + FFE0,6

 (signed displacement) = 6016 . Thus, the TB — 32 instruction in this example causes the

value of the CRU input bit at address 60, 6 to be transferred to bit 2 of the status register.
This bit is tested in the execution of the JEQ or JNE instructions; if it is a one, the PC
will be loaded with a new value (JEQ instruction).

44

9900 FAMILY SYSTEMS DESIGN 	 4-5 1

8 	I 	2 	I 	0

0 1 	2 3 4 	5 	6 7 	8 	9 10 11 12 13 14 15

HARDWARE

BASE

ADDRESS SOFTWARE

BASE

ADDRESS

x 	.1 , I 0
	 o I 0
	

0
	

0
	

x
	

W12

DON'T CARE

8 2 9

12 13 2 3 10 	11 4 5 6 7 	8 9 14

0 0 0 0 0 0 0 0 0

EFFECTIVE CRU BIT ADDRESS

0 	1 	

0

SET TO ZERO

FOR ALL CRU

OPERATIONS

ADDRESS BUS

INPUT/OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

8 9 10 11 12 13 14 15

0 0 0 0 0
SIGNED

DISPLACEMENT

BIT 8 SIGN

EXTENDED

Figure 4-44. TMS 9900 Single-Bit CRU ilddress Development

LDCR Instruction

The LDCR may transfer from 1 to 16 fits of output data with each instruction. Output
of each bit is performed by a CRU output machine cycle; thus, the number of CRU
output machine cycles performed by an LDCR instruction is equal to the number of bits
to be transferred.

As an example, assume that the instruction "LDCR @600,10" is executed, and that
WR12 = 80016 and the memory word at address 600 contains the bit pattern shown in
Figure 4-45. In the first CRU output machine cycle the least significant bit of the
operand (a) is output on CRUOUT. In each successive machine cycle the address is
incremented by one and the next least-significant bit of the operand is output on
CRUOUT, until 10 bits have been output. It is important to note that the CRU base
address is unaltered by the LDCR instruction, even though the address is incremented as
each successive bit is output.

STCR Instruction

The STCR instruction causes from 1 to 16 bits of CRU data to be transferred into
memory. Each bit is input by a CRU input machine cycle.

Consider the circuit shown in Figure 4-46. The CRU interface logic multiplexes input
signals m-t onto the CRUIN line for addresses 200 16-207 16 . If WR12 =400 16 when the
instruction "STCR @ 602,6" is executed, the operation is performed as shown in Figure
4-47. At the end of the instruction, the six LSBs of memory byte 602 are loaded with m-
r. The upper bits of the operand are forced to zero.

4-52 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 INPUT/OUTPUT

Architecture and
Interfacing Techniques

Memory Address 600 1) 13 o nml 	k j 	ilhg f e d c b a

7 8 	 5

WR121)0000100010000 00 001

7 	8 	 15

4 	0 	1 	0 	1

CRU Base Address = 400 16

AO A14

CRUOUT

CRUCLK

44

Figure 4-45. Multiple-Bit CRU Output

A3

A4

A S SN74LS251

A6 (TIM 9905)

A7 J 	DO SEL200

A8 D1

A9 A14
A 	D2 0

Al3 D3

All All C 	D4 B

D5

CRUIN D6 •
D7

Figure 4-46. Example CRU Input Circuit

9900 FAMILY SYSTEMS DESIGN 	 4-53

INPUT/OUTPUT Hardware Design:
Architecture and
Interfacing Techniques

WR12 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 01

0 7 8
	

15

2
	

0
	

0

CRU BASE ADDRESS ---- 20016

AO A14

CRUIN
	

I n 	1 	1 p 	I 	q l 	I

MEMORY
ADDRESS 602 0 1 0 Or q p 0 n ml

7

Figure 4-47. Multiple-Bit CRU Input

CRU Paper Tape Reader Interface

CRU interface circuits are used to interface data and control lines from external devices
to the 9900. This section describes an example interface from a paper tape reader.
The paper tape reader is assumed to have the following characteristics:

1. It generates a TTL-level active-high signal (SPROCKET HOLE) on detection of
a sprOcket hole on the paper tape.

2. It generates an 8-bit TTL active-low data which stays valid during SPROCKET
HOLE = 1.

3. It responds to a TTL-level active-high command (Paper Tape RUN) signal by
turning on when PTRUN = 1 and turning off when PTRUN = 0.

4-54 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INPUT/OUTPUT

Figure 4-48 illustrates the circuitry to interface the reader to the CRU. The interface is
selected when PTRSEL = 0; PTRSEL is decoded from the AO-All address outputs

 from the 9900. Thus, the output of the SN74LS251 is active only when PTRSEL = 0;
otherwise, the output is in high impedance and other devices may drive CRUIN. The
data inputs are selected by Al2-A14 and inverted, resulting in active high data input on
CRUIN. The positive transition of SPROCKET HOLE causes PTRINT to go low.
PTRINT is the active low interrupt from the interface. PTRINT is set high, clearing
the interrupt, whenever a CRU output machine cycle is executed and the address causes
PTR L to be active. When a one is output, PTRUN is set, enabling the reader, and
the reader is disabled when a zero is output to the device. Thus, any time PTRUN is set
or reset, the interrupt is automatically cleared.

+5

111
PR 	

CRUOUT

'A
SN74LS74

CLR

+5

PTRUN
•

PTRCLK

PTRSEL

CRUCLK

44

CRU I/F

DECODED PAPER
TAPE READER ADDRESS
(DECODED FROM AO - All)

DATA INPUTS
FROM PAPER
TAPE READER

	

DATAO v. 	

DATA1 	

	

DATA2 ► 	

	

DATA3 11. 	

DATA4 	

DATA5 	

	

DATA6 ► 	

DATA7 	

DO

D1

D2
SN74LS251

D3
TIM 9905)

D4

D5

D6

D7
C B A

CRUIN

5TRsL I

A14

} ADDRESS BUS A13

Al2
+5

}

PAPER TAPE READER
INTERRUPT
(TO INTERRUPT
PROCESSOR)

PTRINT SPROCKET HOLE 	

SN74LS74

a
CLR

Figure 4-48. Paper Tape Reader Interface

9900 FAMILY SYSTEMS DESIGN 	 4-55

INPUT/OUTPUT
	

Hardware Design:
Architecture and
Interfacing Techniques

The software routine in Figure 4- 49 controls the paper-tape reader interface described
above. It is a re-entrant procedure that can be shared by several readers. The
assumptions are that:

1. Each reader has its own workspace which is set up on the trap location for that
reader's interrupt.

2. The workspace registers are allocated as shown in Figure 4-50.

3. The CRU input bits 0-7 (relative to CRU base) are reader data. CRU output bit 0
controls PTRUN and clears the interrupt.

4. The most significant byte of R9= End of File Code.

5. R10 = Overflow Count

6. R11= Data Table Pointer Address.

The procedure has two entry points. It is entered by a calling routine at PTRBEG to
start the reader and it returns control to that routine. It is entered at PTRINT via
interrupt to read a character. The return in this case is to the interrupted program.

The control program may be used by any number of paper-tape reader interfaces, as
long as each interface has a separate interrupt level and workspace. As each reader issues
an interrupt, the 9900 will process the interrupt beginning at location PTRINT.
However, the workspace unique to the interrupting device is used. The organization of
memory to control two paper tape readers is shown in Figure 4-50. The interrupt-
transfer vector causes the appropriate WP value to be loaded. In both cases PTRINT,
the entry point for the control program, is loaded into the PC.

PTRINT

PTRBEG

PTR END

STCR 	 "R11,8

CB 	 *R11+, R9

JEQ 	 PTREND

DEC 	 R10

JEQ 	 PTREND

SBO 	 PTRUN

RTWP

SBZ 	 PTRUN

LI 	 R10, MAXCOUNT

RTWP

Figure 4-49. Paper Tape Reader Control Program

4-56 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

INPUT/OUTPUT

MEMORY ADDRESS 	MEMORY CONTENTS 	 CRU

	

I'" Ph' LEVEL 4 WP 	16

	

LEVEL 4 PC 	18

	

LEVEL 5 VVP 	20

	

LEVEL 5 PC 	22

PTRWP1

PTR INT

PTRWP2

PTR INT

LEVEL 4 INT

LEVEL 5 INT

PAPER TAPE
DATA

READER 1

IPTR1)
■■■•■•••

PTR INT

PAPER TAPE

READER CONTROL

PROGRAM

44

F
a

W
O

R
K

S
P

A
C

E

DATA

W
O

R
K

S
P

A
C

E

PTRWP2

PTRWP2+24

PTRWP1

PTRWP1+24

WR12 (PTR2 CRU BASE)

WR13 (RETURN WP)

WR14 (RETURN PC)

WR15 (RETURN ST)

WR12 (PTR 1 CRU BASE)

VVR13 (RETURN VW)

WR14 (RETURN PC

WR15 (RETURN STI

PAPER TAPE

READER 7

IPTR2I

• AM.

Figure 4-50. Software Configuration for Two Paper Tape Readers with Common Control Program

Burroughs SELF-SCAN Display Interface

This section describes a TMS9900 CRU interface to a Burroughs SELF-SCAN® panel
display model SS30132-0070. The display panel has a 32-position, single-row character
array with a repertoire of 128 characters.

The panel display operates in a serial-shift mode in which characters are shifted into the
panel one at a time. Characters are shifted in right-to-left and can be shifted or
backspaced left-to-right. A clear pulse erases the display.

9900 FAMILY SYSTEMS DESIGN
	

4-57

ABC ABC

SN74LS259
(TIM 9906)

07 06 05 Q4 03 Q2 01 00

SN74LS259
(TIM 9906)

07 01
	

00

6

CRUIN

OTHER

CRU
OUTPUTS

AO A14

CRUCLK
■ 4

CRUOUT

TMS 9900
CPU

DATA

TAKEN
BLANK 	CLEAR B B B B

DATA
64 32 16 8 4 2

PRESENT

DISPLAY 	 MODEL
SS30132-0070

+5 V

—12 V

—120 V

INPUT/OUTPUT
	

Hardware Design:
Architecture and
Interfacing Techniques

The CRU display interface is shown in Figure 4-51 and a display control subroutine is
shown in Figure 4-52. The subroutine is called by one of two XOP instructions, XOPO
and X0P1. The calling routine passes the address and length of the output string in
registers 8 and 9 of its workspace. The two XOP subroutines share the same workspace
and perform the same function except that XOP1 clears the panel display first. The
backspace feature is not used. The panel display is blanked during character entry.

MEMORY

Figure 4-51. Display Control Interface

4-58 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 INTERRUPTS

Architecture and
Interfacing Techniques

EIGHT 	EQU 	16

NINE 	EQU 	18

RXOP1 	SBZ 	7 	 Clear Panel

LI 	 R1,11

LOOP1 	DEC 	R1 	 Delay >67msec

JNE 	LOOP1

SBO 	7

RXOP2 	SBO 	9 	 Blank Panel

MOV 	@EIGHT (131,1 	Load Address (Old R8—•-R1)

MOV 	@NINE (131,2 	Load Length (Old R9--R2)

LOOP2 	LDCR 	"1+,7 	 Output Char

SBO 	8 	 Data Present

WAIT 	TB 	 0 	 Wait for Data Taken

JEQ 	Wait

SBZ 	8

DEC 	2 	 Decrement Count

JNE 	LOOP2 	 Loop Until Through

SBZ 	9 	 Unblank Panel

RTWP 	 Return

Figure 4-52. Burroughs SELF-SCAly® Display Control Program

INTERRUPTS

The TMS 9900 provides fifteen maskable interrupt levels in addition to the RI 	and
LOAD functions. The CPU has a priority ranking system to resolve conflicts between
simultaneous interrupts and a level mask to disable lower priority interrupts. Once an
interrupt is recognized, the CPU performs a vectored context switch to the interrupt
service routine. The RESET and LOAD functions are initiated by external input
signals.

41

9900 FAMILY SYSTEMS DESIGN 	 4-59

INTERRUPTS
	

Hardware Design:
Architecture and
Interfacing Techniques

RESET

The RE 	I' signal is normally used to initialize the CPU following a power-up. When
active (low), the RESET signal inhibits WE and CRUCLK, places the CPU memory
bus and control signals in a high-impedance state, and resets the CPU. When the
RESET signal is released, the CPU fetches the restart vector from locations 0000 and
0002, stores the old WP, PC, and ST into the new workspace, resets all status bits to
zero and starts execution at the new PC. The RESET signal must be held active for a
minimum of three clock cycles. The RESET machine cycle sequence is shown in Figure
4-53.

A convenient method of generating the RE 	I' signal is to use the Schmitt-triggered D-
input of the TIM9904 clock generator. An RC network connected to the D-input
maintains an active RESET signal for a short time immediately following the power-on,
as shown in Figure 4-54.

CYCLE TYPE FUNCTION

Loop While Reset is Active

1 ALU Set Up

2 ALU Set Up

3 Memory Fetch New WP, Move Status To

T Reg, Clear Status

4 ALU Set Up

5 Memory Store Status

6 ALU Set Up

7 Memory Store PC

a ALU Set Up

9 Memory Store WP

10 ALU Set Up

11 Memory Fetch New PC

12 ALU Set Up MAR for Next

Instruction

Figure 4-53. RESET Machine Cycles

■ 4

4-60 	 9900 FAMILY SYSTEMS DESIGN

`R AND C VALUES SHOULD
BE CALCULATED AS FUNCTION
OF VCC RISE TIME.

+5

R
RESET

TIM 9904
ISN74LS3621

CLOCK

GENERATOR
TMS 9900

CPU

RESET

Hardware Design:
	

INTERRUPTS
Architecture and
Interfacing Techniques

C

Figure 4-54. RESET Generation

LOAD

The LOAD signal is normally used to implement a restart ROM loader or front panel
functions. When active (low), the LOAD signal causes the CPU to perform a non-
maskable interrupt. The LOAD signal can be used to terminate a CPU idle state.

The LOAD signal should be active for one instruction period. Since there is no standard
TMS 9900 instruction period, IAQ should be used to determine instruction boundaries.
If the LOAD signal is active during the time that the RESET signal is released, the
CPU will perform the LOAD function immediately after the RESET function is
completed. The CPU performs the LOAD function by fetching the LOAD vector from
addresses FFFC i6 and FFFE16 , storing the old WP, PC, and ST in the new workspace,
and starting the LOAD service routine at the new PC, as shown in Figure 4-55.

An example of the use of the LOAD signal is a bootstrap ROM loader. When the
LOAD signal is enabled, the CPU enters the service routine, transfers a program from
peripheral storage to RAM, and then transfers control to the loaded program.

Fi?ure 4-56 illustrates the generation of the LOAD signal for one instruction period.

44

9900 FAMILY SYSTEMS DESIGN 	 4-61

.4

INTERRUPTS Hardware Design:
Architecture and
Interfacing Techniques

CYCLE TYPE FUNCTION

1 ALU Set Up

2 Memory Read Fetch New WP

3 ALU Set Up

4 Memory Write Store Status

5 ALU Set Up

6 Memory Write Store PC

7 ALU Set Up

8 Memory Write Store WP

9 ALU Set Up

10 Memory Read Fetch New PC

11 ALU Set UP MAR for Next

Instruction

Figure 4-55. LOAD Machine Cycle Sequence

Figure 4-56. LOAD Generation

4-62
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 INTERRUPTS

Architecture and
Interfacing Techniques

BASIC MACHINE CYCLE

The interrelationship between the LOAD and RESET signals and the general
operation of the 9900 and execution of instructions may best be shown by the flow
diagram in Figure 4-57. An orderly starting procedure involves the holding of the
RI T line low when power is applied to the chip. After application of power and after
the clock has begun to run, the internal instruction control circuitry checks to see if the
RESET line is held low. and, if the answer is "yes", will stay in a loop as shown in the
diagram. When the RE 	I' line goes high, it is no longer active and a level zero
interrupt is taken in which the RESET vector, the numbers to fill the workspace pointer
and program counter registers, are fetched from memory locations zero and two.
Furthermore, the previous values of the workspace pointer, program counter and status
register are stored in the new workspace, although these values are random numbers
immediately following power up. Following this, the interrupt mask is set to zero to
mask all other interrupts.

The next decision is regarding the LOAD line. If this particular line is active, or low,
then immediately there will be another context switch in which the LOAD vector will
be brought in from the last two locations in memory, FFFC. and FFFEie , and loaded
into the workspace pointer and program counter respectively. If the LOAD is not
active, the 9900 proceeds directly to an instruction acquisition cycle. In either case, the
very next step is to fetch the instruction from the memory and execute it.

Following this, the program counter is updated and a sequence of checks made regarding
the LOAD, XOP, and interrupt conditions. First is the check for the LOAD line. If this
is active, the LOAD context switch will occur. If not, there will be a test to see if the
instruction just executed was an XOP or BLWP. If not, the interrupt request line will be
checked. If there is not an interrupt request, and the last instruction was not an idle
instruction, the machine may proceed to fetch the next instruction and continue.

In the event that the last instruction executed was an XOP or BLWP, the 9900 will
ignore the interrupt request line and will proceed to fetch a new instruction. This insures
that at least one instruction of a subprogram that is entered via a context switch will be
executed before another context switch may occur, such as an interrupt. In the event
that the interrupt request line is active following the execution of a normal instruction, a
test is made to determine that the interrupt is valid, that is to say, "Is the interrupt mask
set to allow this interrupt." If the interrupt is not allowed, the processor proceeds to
fetch the next instruction. In the event that it is allowed, a context switch will be made
and the interrupt vector from the appropriate locations in the first 32 words of memory
will be fetched and the workspace pointer and program counter will be loaded with the
new numbers. As a part of this context switch, the interrupt mask is set to a level one
less than the interrupt just taken. This is to insure that no lower priority interrupt may
occur during the servicing of the current interrupt cycle. Notice further that in this
diagram that the logic is such that at least one instruction of any subprogram will be

41

9900 FAMILY SYSTEMS DESIGN 	 4-63

INTERRUPTS
	

Hardware Design:
Architecture and
Interfacing Techniques

executed immediately following a context switch. The only exception to this is the
simultaneous presence of RESET and LOAD signals. Finally, the idle instruction will
suspend instruction execution in the 9900 until an interrupt, RE -.I T or LOAD signal
occurs.

MASKABLE INTERRUPTS

The TMS 9900 has 16 interrupt levels with the lower 15 priority levels used for
maskable interrupts. The maskable interrupts are prioritized and have transfer vectors
similar to the RESET and LOAD vectors.

Interrupt Service

A pending interrupt of unmasked priority level is serviced at the end of the current
instruction cycle with two exceptions. The first instruction of a RESET, LOAD, or
interrupt service routine is executed before the CPU tests the INTREQ signal. The
interrupt is also inhibited for one instruction if the current instruction is a branch and

■ 4 load workspace pointer instruction (BLWP) or an extended operation (XOP). The one
instruction delay permits one instruction to be completed before an interrupt context
switch can occur. A LIMI instruction can be used as the first instruction in a routine to
lock out higher priority maskable interrupts.

The pending interrupt request should remain active until recognized by the CPU during
the service routine. The interrupt request should then be cleared under program control.
The CRU bit manipulation instructions can be used to recognize and clear the interrupt
request.

The interrupt context switch causes the interrupt vector to be fetched, the old WP, PC,
and ST to be saved in the new workspace, and the new WP and PC to be loaded. Bits
12-15 of ST are loaded with a value of one less than the level of the interrupt being
serviced. The old WP, PC, and ST are stored in the new workspace registers 13, 14, and
15. When the return instruction is executed, the old WP, PC, and ST are restored to the
CPU. Since the ST contains the interrupt mask, the old interrupt level is also restored.
Consequently, all interrupt service routines should terminate with the return instruction
in order to restore the CPU to its state before the interrupt.

The linkage between two interrupt service routines is shown in Figure 4-58 and the
interrupt machine cycle sequence is shown in Figure 4-59.

4-64 	 9900 FAMILY SYSTEMS DESIGN

RESET SIGNAL
CAUSES IMMEDIATE

ENTRY HERE

INSTRUCTION

ACQUISITION

INSTRUCTION

EXECUTION

Hardware Design:
Architecture and
Interfacing Techniques

IN

V

GET RESET VECTOR

(WP AND PC)

FROM LOCATION 0, 2

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE SET

INTERRUPT MASK
IST12-ST151-= 0

44

N

GET LOAD VECTOR

(WP AND PCI FROM

LOCATION FEEC 16 ,

FFFE16

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE SET

INTERRUPT MASK

IST12 - ST15) = 0

INTERRUPT
VALID? (1C0-1C3<-

Ti 2-ST15)

V

GET INTERRUPT LEVEL

VECTOR (WP AND PC)

STORE PREVIOUS PC,

WP, AND ST IN NEW

WORKSPACE SET

INTERRUPT MASK IST12
-ST151 TO LEVEL - 1

Figure 4-57. TMS 9900 CPU Flow Chart

9900 FAMILY SYSTEMS DESIGN
	

4-65

11 ,4 1 11,1VMU r Hardware Design:
Architecture and
Interfacing Techniques

Interrupt Signals

The TMS 9900 has five inputs that control maskable interrupts. The INTREQ signal is
active (low) when a maskable interrupt is pending. If INTREQ is active at the end of
the instruction cycle, the CPU compares the priority code on ICO through IC3 to the
interrupt mask (ST12-ST15). If the interrupt code of the pending interrupt is equal to
or less than the current interrupt mask, the CPU executes a vectored interrupt;
otherwise, the interrupt request is ignored. The interrupt priority codes are shown in
Table 4-3. Note that the level-0 interrupt code should not be used for external interrupts
since level 0 is reserved for RESET.

PROGRAM A

GENERAL MEMORY

PROGRAMS

GENERAL MEMORY

WRO

WR1

WORKSPACE B

WR13 - 	WP 	(A)

WR14 	PC 	(A)

WR15 - 	ST 	(A)

GENERAL MEMORY

WRO

WORKSPACE A

WR15

Figure 4-58. Interrupt Linkage

4-66 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

11N1 1 hfClc(U1-' 1
Architecture and
Interfacing Techniques

CYCLE TYPE FUNCTION

1 ALU Set Up

2 Memory Read Fetch New WP

3 ALU Set Up

4 Memory Write Store Status

5 ALU Set Up

6 Memory Write Store PC

7 ALU Set Up

8 Memory Write Store WP

9 ALU Set Up

10 Memory Read Fetch New PC

11 ALU Set Up MAR for Next

Instruction

Figure 4-59. Interrupt Processing Machine Cycle Sequence 	 4.■

Figure 4-60 illustrates the use of the TMS 9901 programmable system interface for
generation of the interrupt code from individual interrupt input lines. The TMS 9901
provides six dedicated and nine programmable latched, synchronized, and prioritized
interrupts, complete with individual enabling/disabling masks. Synchronization prevents
transition of ICO-IC3 while the code is being read. A single-interrupt system with an
arbitrarily chosen level-7 code is shown in Figure 4-61. The single-interrupt input does
not need to be synchronized since the hardwired interrupt code is always stable.

Interrupt Masking

The TMS 9900 uses a four-bit field in the status register, ST12 through ST15, to
determine the current interrupt priority level. The interrupt mask is automatically
loaded with a value of one less than the level of the maskable interrupt being serviced.
The interrupt mask is also affected by the load interrupt mask instruction (LIMI).

Since the interrupt mask is compared to the external interrupt code before an interrupt
is recognized, an interrupt service routine will not be halted due to another interrupt of
lower or equal priority unless a LIMI instruction is used to alter the interrupt mask. The
LIMI instruction can be used to alter the interrupt-mask level in order to disable
intervening interrupt levels. At the end of the service routine, a return (RTWP)
restores the interrupt mask to its value before the current interrupt occurred.

9900 FAMILY SYSTEMS DESIGN 	 4-67

11N 1 LKKUP Hardware Design:
Architecture and
Interfacing Techniques

v c ,

TIM 9904

CLOCK GENERATOR

03

CRU

DECODE AO A9

SYSTEM

INTERRUPTS

I/O PORTS

01-04

TMS

9900

CPU

410

All

Al 2

413

A14
CRUOUT

.4
CRUIN

CRUCLK

TMS

9901

PSI

SO

Si

52

S3

S4

RST1 RESET

Figure 4-60. System With 15 External Interrupts

Table 4-3. Interrupt Priority Codes

Interrupt Level

Vector Location

(Memory Address

In Hex)

Device Assignment

Interrupt Mask Values To

Enable Respective Interrupts

(ST12 thru ST15)

Interrupt

Codes

ICO thru IC3

(Highest priority) 	0 00 Reset 0 through F* 0000

1 04 External device 1 through F ,'600-1 ■

2 08 2 through F 0010
3 GC 3 through F 0011

4 10 4 through F 0100

5 14 5 through F 0101

6 18 6 through F 0110

7 1C 7 through F 0111

8 20 8 through F 1000

9 24 9 through F 1001

10 28 A through F 1010

11 2C B through F 1011

12 30 C through F 1100

13 34 D through F 1101

14 38 E and F 1110

(Lowest priority) 	15 3C External device F only 1111

*Level 0 can not be disabled.

4-68
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

I1N 1 tA(KUY i
Architecture and
Interfacing Techniques

INTERRUPT
	

INTREQ

ICO

TMS 9900

IC1

+5
	

IC2

IC3

4 4

Figure 4-61. Single-Interrupt System

Note that the TMS 9900 actually generates the interrupt vector address using ICO-IC3
five clock cycles after it has sampled INTREQ and four clock cycles after it has
compared the interrupt code to the interrupt mask in the status register. Thus, interrupt
sources which have individual masking capability can cause erroneous operation if a
command to the device to mask the interrupt occurs at a time when the interrupt is
active and just after the TMS 9900 has sampled INTREQ but before the vector address
has been generated using ICO-IC3.

The individual interrupt masking operation can be easily allowed if the masking
instruction is placed in a short subroutine which masks all interrupts with a LIMI 0
instruction before individually masking the interrupt at the device, as shown in
Figure 4-62.

9900 FAMILY SYSTEMS DESIGN 	 4-69

11N 1 .CKK U Y 1
	

Hardware Design:
Architecture and
Interfacing Techniques

INCORRECT

XXX

SBO 	0 	 SET MASK (INTERRUPT CAN OCCUR

DURING SBO CAUSING ERRONEOUS

YYY 	 OPERATION)

CORRECT

XXX

	

BLWP 	9 	 (VVR9) = ADDRESS OF SBW

(WR10)= ADDRESS OF SB1

XXXX

	

SB1 LIMI 	0 	 CLEAR STATUS MASK TO INHIBIT INTERRUPTS

	

MOV 	@24(13), 12 	 MOVE CRU BASE ADDRESS TO WR12

	

SBO 	0 	 SET MASK

	

RTWP 	 RETURN

SBW BSS 	32 	 SUBROUTINE WORKSPACE

Figure 4-62. External Interrupt Clearing Routine

Interrupt Processing Example

The routine in Figure 4-63 illustrates the use of the LIMI instruction as a privileged or
non-interruptable instruction. The level-5 routine sets a CRU bit and then loops until a
corresponding CRU bit is true. The first instruction in the routine is completed before a
higher priority interrupt can be recognized. The LIMI instruction, however, raises the
CPU priority level to level 0 in order to disable all other maskable interrupts.
Consequently, the level-5 routine will run to completion unless a RESET signal or a
LOAD signal is generated. At the end of the routine, the RTWP instruction restores
the CPU to its state before the level-5 interrupt occurred.

Level 5 	LIMI 	0 	Disable Maskable INTREQs

SBO 	ACK 	Set CRU Output Bit

Loop 	TB 	RDY 	Test CRU Input Bit

JNE 	LOOP 	Loop Until Input True

RTWP 	 Return

Figure 4-63. LIMI Instruction Routine

4- 70 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

4•111a,

ELECTRICAL REQUIREMENTS

UNDERSTANDING THE ELECTRICAL SPECIFICATIONS

A description of the interface to the 9900 would be incomplete without a set of
specifications for the electrical signals which perform the functions described in the
previous sections. Each pin of the 9900 may be characterized with a set of minimum and
maximum voltage and current levels. In many cases, the switching characteristics, the
rate of transition from the high state to the low state is also important. The detailed
electrical specifications for each of the processors in the 9900 family are given in the
Product Data chapter. A brief statement about the basic concepts of device characterization
and data sheet specification is of value to designers with limited exposure to microprocessor
and semiconductor memory products.

Specifications are given in two ways. First, absolute maximum ratings are given which
simply define the limits of stress which the chip can withstand without damage. (Figure 4-
64 shows the absolute maximum ratings for the TMS 9900.) The normal design
specification is the recommended operating conditions table (Figure 4-65) which specifies
power supply limits, signal voltage levels, and the operating temperature range. In
reading these two tables it is necessary to read the explanatory notes, one of which points
out that the absolute maximum power supply voltages are specified with respect to the
chip substrate or VBB (pin 1). In the normal operating conditions, all voltages are
specified with respect to the V ss or ground (pins 26, 40). The four voltages given, VBB,

\Tee, VDD, and Vss are not actually four power supplies, but three power supplies: + 5V,
— 5V, and + 12V, with V ss being the ground or reference point.

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, VCC (see Note 1) 	 —0.3 to 20 V
Supply voltage, VDD (see Note 1) 	 —0 3 to 20 V
Supply voltage, VSS '(see Note 1) —0.3 to 20 V
All input voltages (see Note 11 	 —0.3 to 20 V
Output voltage (with respect to VSS) 	 —2 V to 7 V
Continuous power dissipation 1.2 W
Operating free-air temperature range 	 0° C to 70° C
Storage temperature range 	 —55° C to 150° C

'Stresses beyond those listed under "Absolute Maximum Ratings - may cause permanent damage to the device. This is a stress rating only and

functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions -

section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1' Under absolute maximum ratings voltage values are with respect to the most negative supply, VBB (substrate), unless otherwise

noted. Throughout the remainder of this section, voltage values are with respect to VSS.

Figure 4-64. Jbsolute Maximum Ratings

44

9900 FAMILY SYSTEMS DESIGN 	 4-71

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX UNIT
Supply voltage, VBB —5.25 —5 —4.75 V

Supply voltage, Vcc 4.75 5 5.25 V

Supply voltage, VDD 11.4 12 12.6 V

Supply voltage, VSS 0 V

High-level input voltage, Vol (all inputs except clocks) 2.2 2.4 VCC+1 V

High-level clock input voltage, VI H (0) VDD-2 VDD V

Low -level input voltage, VI L (all inputs except clocks) —1 0.4 0.8 V

Low -level clock input voltage, ViLio) —0.3 0.3 0.6 V

Operating tree-air temperature, TA 0 70

Figure 4-65. Recommended Operating Conditions

Input signals should be in the range from 2.2V to 6V (assuming V cc is 5V) for the high
level, the nominal design point being at 2.4V. Low level input voltage should be below
0.6V (but not less than — 0.3V.) These specifications are not the same as the standard
TTL specifications as far as the "worst case" design criteria are concerned. Care should
be exercised when interfacing the 9900 with TTL circuits that loading of the TTL
devices does not produce input voltages to the 9900 which are outside the specified
range.

The clock signal voltages are substantially different from the TTL standard; however,
the TMS 9904 is available to provide these signals.

The electrical characteristics specification, Figure 4-66. defines the current into or out of
the 9900 chip at the operating voltage levels. The input current, I I , is specified for four
groups of input signals over a range of input voltages. For example, the input current for
any input op the data bus (when reading data from the memory) is nominally + 50
microamps over the input voltage range from OV to 5V (when V cc is 5V). The current is
negative (flowing out of the 9900) for low levels, and positive (into the 9900) for high
levels. For "worst case" design the maximum values should be used.

Voltage specifications on the output pins show how the 9900 output devices drive
external circuits. For the high level, Von, the voltage will be at least 2.4V but may go as
high as 5V (Vcc) under the condition of output current of 0.4 mA. (Currents flowing out
of the chip are shown as negative values.) When an output signal is at the low state, the
output voltage, VoL, will be no greater than 0.65V when the current flowing into the
chip is 3.2 mA. Although the I-V characteristic of the output circuit is nonlinear, a
second data point is given: if the current is 2 mA, the voltage will be no greater than
0.50V. These numbers tell the designer what the output drive circuit current sinking
capability is. Two standard TTL loads (1.6 mA each) can be accommodated, but the Vol,

level, as specified, may be as high as at 0.65V (the standard TTL specification for
outputs is Vol, 0.4V.)

4-72 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)

C I'

PARAMETER TEST CONDITIONS MIN TYPI MAX UNIT

II Input current

Data bus during DBIN VI = VBB to VDc .t50 »100

pA

WE MEMEN, DBIN, Address

bus, Data bus during HOLDA
VI = VBB to Vcc ±50 ±100

Clock' VI = —0.3 to 12.6 V ±25 ±75

Any other inputs VI = VBB to Vcr, ±1 ±10

VOH High-level output voltage 10 = —0.4 mA 2.4 VCC V

VOL Low-level output voltage
lo = 3.2 mA 0.65

V
lo = 2 mA 0.50

I BB Supply current from VBB 0.1 1 mA

'cc Supply current from Vcc 50 75 mA

IDD Supply current from VDD 25 45 mA

C,
Input capacitance (any inputs except

clock and data bus)

VBB ' —5/ 	f = 1MHz,

unmeasuled pins at VSS
10 15 pF

Cif , 	1) Clock-1 input capacitance
f = 1MHz VBB = —5, ,

unmeasured pins at VSS
100 150 pF

C,(02) Clock-2 input capacitance VBB = —5, 	f = 1MHz,

unmeasured pins at VBB
150 200 pF

C;(03) Clock-3 input capacitance
Vgg = — 5, 	f = 1MHz,

unmeasured pins at VBB
100 150 pF

C,(04) Clock-4 input capacitance
VBB = —5, 	f = 1MHz,

unmeasured pins at VSS
100 150 pF

COB Data bus capacitance VBB = — 5, 	f -= 1MHz,

unmeasured pins at VSS
15 25 pF

Co
Output capacitance (any output except

data bus)

Vgg = — 5, 	f = 1 MHz,

unmeasured pins at VSS
10 15 pF

/All typical values are at TA = 25 ° C and nominal voltages

'D.C. Component of Operating Clock

Figure 4-66. Electrical Characteristics

The timing of the various signals on the TMS 9900 chip is shown in Figure 4-67. The
fundamental propagation time from a clock phase pulse (leading edge) to the specified
output is given as t p and is typically 20 ns but is never more than 40 ns (worst case). The
parameters tp Lli and ton, are the propagation delays from the appropriate clock signal to
the low-to-high transition of the output (tp Lii) or the high-to-low transition of the output
(toiL). For example, the WE signal makes its high-to-low transition 20 ns after 	clock,
and makes a low-to-high transition 20 ns after the next 01 clock. Most of the output
signals make transitions 20 ns after the 492 clock, and remain valid until the next 02
clock.

Additional information regarding design constraints based on the electrical specifications
is given in the next section.

4

9900 FAMILY SYSTEMS DESIGN 	 4-73

DON'T CARE
WiliWayiyiyayffethy
NWWWWWWWWW1WWWWWW1

DBIN \I

INPUT

CLOCK 01

CLOCK 02

CLOCK 03

CLOCK 04

CRUCLK OUTPUT

WE OUTPUT

WAIT OUTPUT

MEMEN

2.2 V
S S

VALID
0.6 V

5

	

—461ty j 	—11.1 th

	

I
I 	9.4 \/ 	I 	I

000000000000000000f WAWA/Ail/AIWA

9.4V

41.H(C)

2.4 V

2.4 V

9.4V

—01 Id— tpuq(C)

12.4 	V

, P1-11(C)

0.4 V

tpi.HIC) OR tpHL(C)
I

■ 4

O.4V

11_11-

/**--

tpLH1C) OR tpoL(C) 	

I 	

-4—

9.4V

.11— t,,(C)

0.4 V

t r,H (B) OR tpHL(R) —o-

Tor ALL OTHER OUTPUTS
AAA

1._
5

WNW Ai
VALIDT

5 	

9.4V

0.7 V 	 0.7 V

9 4V

PARAMETER TEST CONDITIONS MIN 	TYP 	MAX UNIT

tp LH or tpHL Propagation delay time, clocks to outputs CL = 200 pF 20 ns

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS

Figure 4-67. Switching Characteristics

4-74
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

DETAILED ELECTRICAL INTERFACE SPECIFICATIONS (TMS 9900)

This section reviews the TMS 9900 electrical requirements, including the system clock
generation and interface signal characteristics. The "TMS9900 Data Manual"
(Chapter 8) should be used for minimum and maximum values.

TMS 9900 Clock Generation

The TMS 9900 requires a non-overlapping four-phase clock system with high-level
MOS drivers. Additional TTL outputs are typically required for external signal
synchronization or for dynamic memory controllers. A single-chip clock driver, the TIM
9904, can be used to produce these clock signals. An alternative clock generator uses
standard TTL logic circuits and discrete components.

The TMS 9900 requires four non-overlapping_12V clocks. The clock frequency can
vary from 2 to 3 Megahertz. The clock rise and fall times must not exceed
100 nanoseconds and must be 10 to 15 nanoseconds for higher frequencies in
order to satisfy clock pulse width requirements. While the clocks must not overlap, the
delay time between clocks must not exceed 50 microseconds at lower frequencies. The
typical clock timing for 3 MHz is illustrated in Figure 4-68.

333 ns

83 ns

01
	 48 ns

1

I 	1
	

15 ns 	I"1-
15 ns

	I 	I
	

I
I 	I

02
	

I
I

5 ns 	1.6—

	/
Figure 4-68. TMS 9900 Typical Clock Timing

o3

04

44

9900 FAMILY SYSTEMS DESIGN 	 4-75

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

TIM 9904 Clock Generator

The TIM 9904 (SN74LS362) is a single-chip clock generator and driver for use with
the TMS 9900. The TIM 9904 contains a crystal-controlled oscillator, waveshaping
circuitry, a synchronizing flip-flop, and quad MOS/TTL drivers as shown in Figure 4-69 .

The clock frequency is selected by either an external crystal or by an external TTL-
level oscillator input. Crystal operation requires a 16X input crystal frequency since the
TIM 9904 divides the input frequency for waveshaping. For 3-megahertz operation, a
48-megahertz crystal is required. The LC tank inputs permit the use of overtone
crystals. The LC network values are determined by the network resonant frequency:

1
f —

VLC

For less precise frequency control, a capacitor can be used instead of the crystal.

The external-oscillator input can be used instead of the crystal input. The oscillator input
frequency is 4X the output frequency. A 12-megahertz input oscillator frequency is
required for a 3-megahertz output frequency. A 4X TTL-compatible oscillator output
(OSCOUT) is provided in order to permit the derivation of other system timing signals
from the crystal or oscillator frequency source.

The oscillator frequency is divided by four to provide the proper frequency for each of
the 4-clock phases. A high-level MOS output and an inverted TTL-compatible output is
provided by each clock phase. The MOS-level clocks are used for the TMS 9900 CPU
while the TTL clocks are used for system timing.

The D-type flip-flop is clocked by (1)3 and can be used to synchronize external signals
such as a RESET. The Schmitt-triggered input permits the use of an external RC
network for power-on RESET generation. The RC values are dependent on the power
supply rise time and should hold RESET low for at least three clock cycles after the
supply voltages reach the minimum voltages.

All TIM 9904 TTL-compatible outputs have standard short circuit protection. The
high-level MOS clock outputs, however, do not have shortcircuit_protection.

4-76 	 9900 FAMILY SYSTEMS DESIGN

0-- CK Q

D 	C1

CK Q

<
CK Q

DO 	

151

	> I

> 	
)3 	

Hardware Design:
	 ELECTRICAL REQUIREMENTS

Architecture and
Interfacing Techniques

TANK 2

	

0 	XTAL

	

TANK 1
	

OSC IN

0
	

0 	0 	 0

1 1
	

121 (18)
	

1191
	

1171

CK 0 -• CK 0 > > O OSC
(16) OUT

OSCILLATOR

6

12 VOLT
SECTION

44
	0 01
(12)

	0 ,51TTL)

(14)

O 02
(11)

	0 02ITTL/

(151

O 03
18)

	0 (55(TTL)
17)

	0 04
(91

	0 ,r4(1-TL)
(61

	0 Q
141

120)
0 	

131
0 	6 	0

113) 	(101

vc , ,, a_go, vc 2 22\JD2

5 VOLT 	 12 VOLT

Figure 4-69. TIM 9904 Clock Generator

9900 FAMILY SYSTEMS DESIGN 	 4-77

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

■ 4

This driver uses inexpensive 2N3703s and 2N3704s and broad tolerance passive
components. Resistor tolerances can be 10% with capacitor variations as much as 20%
without affecting its performance noticeably. It shows very little sensitivity to transistor
variations and its propagation times are largely unaffected by output capacitive loading.
It produces rise times in the 10-12 ns region with fall times from 8-10 ns, driving 200 pF
capacitive loads. Propagation times for this driver are such that it produces an output
pulse that is wider than its input pulse. This driver can easily be used at 3 megahertz
without special selection of components. It does have the disadvantage of taking nine
discrete components per driver, but if assembly costs are prohibitive, these can be
reduced by using two Q2T2222 and two Q2T2905 transistor packs. The Q2T2222 is
basically four NPN transistors of the 2N2222 type while the Q2T2905 has four PNP, —„_
2N2905 type transistors in single 14-pin dual-in-line packages. Thus, all four drivers can
be builtusing two packages each of these quadzacks.

TMS 9900 Signal Interfacing

The non-clock CPU inputs and outputs are TTL compatible and can be used with
bipolar circuits without external pull-up resistors or level shifters. The TMS 9900 inputs
are high impendance to minimize loading on peripheral circuits. The TMS 9900 outputs
can drive approximately two TTL loads, thus eliminating the need for buffer circuits in
many systems.

Switching Levels

The TMS 9900 input switch levels are compatible with most MOS and TTL circuits
and do not require pull-up resistors to reach the required high-level input switching
voltage. The TMS 9900 output levels can drive most MOS and bipolar inputs. Some
typical switching levels are shown in Table 4-4.

Table 4-4. Switch Levels

SWITCHING
LEVEL TMS TMS TMS SN SN

(V) 9900 2708 4042-2 74XX 74LSXX

VIH min 3.0 2.2

o
 N

 h
.

C
N

 0
 (N

V1 L max

C

O
 0.65 0.65

co
O

VoH" min 3.7 2.2

VOL max 0.45 0.45

VoH exceeds 2.4 Vas shown in Figure 4-70.

4-78 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

It should be noted that some MOS circuits such as the TMS 4700 ROM and the TMS
2708 EPROM have a minimum high-level input voltage of 3 V to 3.3 V, which exceeds
the TMS 9900 minimum high-level output voltage of 2.4 V. The TMS 9900 high-level

de., output voltage exceeds 3.3 V; however, longer transition times as shown in Figure 4-70
are required.

Loading

The TMS 9900 has high-impedance inputs to minimize loading on the system buses.
The CPU data bus presents a maximum current load of ± 100 pA when DBIN is high.
WE, MEMEN, and DBIN cause a maximum current load of + 100 rtA during HOLDA.
Otherwise, the TMS 9900 inputs present a current load of only ± 10 p,A. The data bus
inputs have a 25-picofarad input capacitance, and all other non-clock inputs have a 15-
picofarad input capacitance.

The TMS 9900 outputs can drive approximately two standard TTL loads. Since most
memory devices have high-impedance inputs, the CPU can drive small memory systems
without address or data buffers. If the bus load exceeds the equivalent of two TTL unit
loads, external buffers are required.

The TMS 9900 output switching characteristics are determined for approximately 200
picofarads. Higher capacitive loads can be driven with degraded switching characteristics
as shown in Figure 4-71.

VOH

4 ^

3 —

I
o
>

TA-70 C

2 —

CL=200pF

i —

20 	 30 	 40 	 50 	 60
	

TPLH
tPHLIns)
	

NSEC

Figure 4-70. tPLH vs Von Typical Output Levels

,,-41111b,

44

9900 FAMILY SYSTEMS DESIGN 	 4-79

ELECTRICAL REQUIREMENTS Hardware Design:
Architecture and
Interfacing Techniques

75 -

50 -

0

25 -

■ 4

1

100
	

200
	

300 	400
CL

Figure 4-71. tpo vs Load Capacitance (Typical)

Recommended Interface Logic

The TMS 9900 is compatible with the logic from any of the common TTL logic
families. The Texas Instruments low-power Schottky logic circuits are, however,
recommended for use in microprocessor systems. The SN74LSXX circuits have higher
impedance inputs than standard TTL, allowing more circuits to be used without
buffering. The SN74LSXX gates also consume less power at similar switching speeds.
Texas Instruments has a wide assortment of bipolar support circuits which can be used
with the TMS 9900, as shown in Table 4-5. Note that five circuits which are
particularly useful in many applications have been dual symbolized with TIM 99XX
numbers for easy reference.

There are a number of buffer circuits available for use in TMS 9900 systems. The
SN74S241 and SN74LS241 non-inverting octal buffers with three-state outputs can be
used as memory address drivers or as bidirectional data transceivers. The SN74S240 and
SN74LS240 are similar, but with inverted outputs. The SN74LS241 can be used as
either a memory-address buffer or as a transceiver for bidirectional data transfers. The
use of a single circuit type for both functions can result in a lower inventory and parts
cost. The buffer switching times can be derated for higher capacitive loading as required.

System Layout

The pin assignments of the TMS 9900 are such that sets of signals (data bus, address
bus, interrupt port, etc.) are grouped together. The layout of a printed circuit board can
be simplified by taking advantage of these groups by locating associated circuitry
(address buffers, interrupt processing hardware, etc.) as close as possible to the TMS
9900 interface. Shortened conductor runs result in minimal noise and compact and
efficient utilization of printed circuit board area.

4-80 	 9900 FAMILY SYSTEMS DESIGN

,411111k,

Hardware Design:
Architecture and
Interfacing Techniques

ELECTRICAL REQUIREMENTS

It is particularly important that the drivers for 4)1-44 be located as close as possible to
the inputs of the TMS 9900, since these signals have fast rise and fall times while driving
fairly high capacitance over a wide voltage range. The 12 volt supply to the clock drivers
should be decoupled with both high (15AF) and low (0.05AF) value capacitors in order to
filter out high and lower frequency variations in supply voltage.

Table 4-5. TMS 9900 Bipolar Support Circuits

BUFFERS (3-STATE)

DEVICE
	

FUNCTION
	

PACKAGE

SN74125 	 QUAD Inverting Buffer 	 14

SN74126 	 QUAD Inverting Buffer 	 14

SN74LS240 	 OCTAL Inverting Buffer/Transceiver 	 20
SN74LS241 	 OCTAL Noninverting Buffer/Transceiver 	20

SN74LS242 	 OCTAL Inverting Transceiver 	 14

SN74LS243 	 OCTAL Noninverting Transceiver 	 14

SN74S240 	 OCTAL Inverting Buffer/Transceiver 	 20

SN74S241 	 OCTAL Noninverting Buffer/Transceiver 	20

SN74365 	 Hex Noninverting Buffer 	 16

SN74366 	 Hex Inverting Buffer 	 16

SN74367 	 Hex Noninverting Buffer 	 16

SN74368 	 Hex Inverting Buffer 	 16

LATCHES

SN74LS259 (TI M9906) 	OCTAL Addressable Latch 	 16
SN74LS373 	 OCTAL Transparent Latch (3-state) 	 20

SN74LS412 	 OCTAL I/O Port (3-state) 	 24

DATA MULTIPLEXERS

SN74LS151
	

OCTAL Multiplexer
	

16
SN74LS251 (TIM9905)

	
OCTAL Multiplexer (3-state)

	
16

OTHER SUPPORT CIRCUITS

SN74148 (TIM 9907) 	 Priority Encoder 	 16
SN74LS348 (TIM9908) 	Priority Encoder 	 16
SN74LS74 	 Dual D-type flip-flop 	 14
SN74LS174 	 Hex D-type flip-flop 	 16
SN74LS175 	 Qual D-type flip-flop 	 16
SN74LS37 	 QUAD 2-Input nand Buffers 	 14
SN74LS362 (TIM9904) 	Clock Generator 	 20

41

9900 FAMILY SYSTEMS DESIGN 	 4-81

TMS 9940
MICROCOMPUTER

Hardware Design
Architecture and
Interfacing Techniques

All voltage inputs to the TMS 9900 should be decoupled at the device. Particular
attention should be paid to the + 5 volt supply. All data and address lines are switched
simultaneously. The worst-case condition occurs when all data and address signals switch
to a low level simultaneously and they are each sinking 3.2 mA. It is thus possible for the
supply current to vary nearly 100 mA over a 20 ns interval. Careful attention must be
paid by the designer to avoid supply voltage spiking. The exact values for capacitors
should be determined empirically, based on actual system layout and drive requirements.

TMS 9940 MICROCOMPUTER

The TMS9940 is a microcomputer chip in a 40-pin package which includes all of the
elements of a computer, that is, memory, I/O and utilities in addition to ALU and
control. Useful in a wide variety of dedicated control functions, it contains a 2k X 8
EPROM program memory and a 128 X 8 RAM for data, a 14 bit interval timer, and a
multiprocessor system interface. Although the memory organization on chip is in 8 bit

■ 4 	bytes, the instructions are the same 16-bit instructions of the 9900 family.

While most of the instructions are identical to the instruction set of the 9900, there are
68 instructions in the 9940 set (as opposed to 69 in the TMS9900) including three new
ones. The differences in the instruction set are illustrated by the following list of
instructions.

DCA 	Decimal Correct for BCD add

}

DCS 	Decimal Correct for BCD subtract 	Added Instructions
LIIM 	Load Interrupt mask
RSET
CKOF
CKON 	

(external instructions in 9900) 	 Deleted Instructions

LREX
IDLE 	Put processor into the idle state 	 Hardware in the 9940

The first three of the instructions in the above list are new instructions and are unique to
the 9940 microcomputer. The DCA and DCS instructions perform decimal correct for
BCD arithmetic. The LIIM instruction is a single word instruction to load the interrupt
mask. (This instruction should be contrasted with the LIMI instruction of the 9900 set
which performs the same function but occupies two memory words.) The idle
instruction, an external instruction in the 9900 set, is now implemented in hardware.
Four instructions in the list are not implemented in the 9940; they are external
instructions in the 9900 set.

4-82 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design
Architecture and
Interfacing Techniques

TMS 9940
MICROCOMPUTER

PIN ASSIGNMENTS AND FUNCTIONAL CONTROL

One of the most extraordinary features of the TMS9940 is the I/O structure in which
32 pins of the 40-pin package are software assignable. That is, they do not perform

Asa, single, predefined, hard-wired functions, but instead are under the control of the
programmer in structuring input/output functions. Table 4-6 lists the functions of four
specific bits in the CRU which are called configuration bits. Because these four bits are
assigned specific locations in the CRU output field and are therefore addressable and
accessible via CRU output instructions, the pins of the package may be dynamically
reassigned during program execution.

Table 4-6. Configuration Bit Functions

Configuration Bit Function

0

1

3

External CRU expansion

Multiprocessor

Clock output for sync

Power down

Table 4-7 describes the way these four configuration bits assign the individual general-
purpose I/O pins to specific functions. In effect, each of the pins may serve two or three
functions, as described in the table. Table 4-8 defines the functions of addressable CRU
locations. The first 256 locations, addresses 000 through OFF, are for external expansion
of the general I/O to an additional 245 (256 less 11 used for expansion). It is important
to note here that these 256 bits are two fields of 256 bits each, one for input and one for
output. Addresses 100 through 17F are not used, and address 180 through 1DF are used
internally.

Notice in Table 4-8 that CRU addresses 183, 184, 185 and 186 locate the four
configuration bits. It is via the setting or resetting of these individual bits that the I/O
configuration is established.

Four other significant features should be pointed out.
One: The interrupt structure includes four levels of interrupt as opposed to the 16-level
interrupt capability of the general 9900 microprocessor group.
Two: There is an on-chip timer, or event counter.
Three: 32 bits of CRU I/O are implemented on the chip. (Addresses 1E0-1EFF)
Four: A multiprocessor system interface is constructed as part of the CRU I/O.

INTERRUPTS

The four interrupt levels are shown in the table below.

Level 0
Level 1

Reset
General Interrupt 1

Level
Level 3

Decrementer
General Interrupt 2

41

9900 FAMILY SYSTEMS DESIGN 	 4-83

TMS 9940
MICROCOMPUTER

Hardware Design
Architecture and
Interfacing Techniques

4

Table 4-7. Configuration Bit Effects by Pin

Pin

Configuration bit 0 (CR U Expansion)

0 1

23 PO (general I/O Al

24 PI A7

25 P2 A3

26 P3 A4

27 P4 A5

2S P5 A6

29 P6 A7

30 P7 As

I S PS CRUIN

17 P9 CRUOUT

16 PO CRUCLK

Pin

Configuration bit 1 (Multiprocessor)

0 1

14

11

P11

1'12

TC (Clock)

TD (Data)

Pm

Configuration bit 2 (Sync)

0 1

15 P13 4) (Clock)

Pin

Configuration bit 3 (Power Down)

0 1

10

9

S

P14

P15

P16

I 1LD

HLDA

IDLE

4-84 9900 FAMILY SYSTEMS DESIGN

Hardware Design
Architecture and
Interfacing Techniques

TMS 9940
MICROCOMPUTER

Table 4-8. Functions of CRU ilddress

CRU /1ddresses Contents of R12 Input Output

000-OFF 000-1FE CRU Expansion CRU Expansion
100-17F 200-2FE NA NA
180 300 Test for Interrupt 1
181 302 Test for Decrementer Clear Decrementer

Interrupt
182 304 Test for Interrupt 2
183 306 Set Configuration Bit 0
184 308 Set Configuration Bit 1
185 30A Set Configuration Bit 2
186 30C Set Configuration Bit 3
187-18F 30E-31E NA NA
190-19D 320-33A Read Decrementer Value Load Decrementer Value
19E 33C TE (Timer/Event Cntr)
19F 33E

1A0-1AF 340-35E Read MPSI Value Load MPSI Value
1B0-1BF 360-37E Read Flag Register Set Flag Register
1C0-1DF 380-3BE Set I/O Direction for PO-P31
1 E0-1FF 3C0-3FE PO-P31 Input Data PO-P31 Output Data

The 9940 implements interrupts using the same context switch concept of the 9900.
Thus, the interrupt vectors for the four interrupt levels must be stored in the first 16
words of the 9940's program memory. As is described in a subsequent paragraph, the
decrementer acts like a counter in an external piece of hardware in that after the
contents of the circuit have been decremented to zero an interrupt signals the processor
to perform a context switch and perform whatever function was programmed as the
service routine for the decrementer. The reset, INT 1, and INT 2 interrupt signals are
available to external hardware.

Since there is no INTREQ (interrupt request) signal input for the 9940, an interrupt
input must be set and remain set until acknowledged. In fact, the acknowledgement of an
interrupt must include instructions to reset holding flip-flops (if used) via CRU
operations.

In the 9940, the interrupt input may be masked (as in all 9900 processors) but there are
specific CRU bits which, if tested, will reveal pending interrupts which are not being
serviced. Thus, the programmer may wish to mask interrupts but still be aware (via TB
instructions to CRU locations 180, 181 and 182 as shown in Table 4-8) of the interrupt
input status.

41

9900 FAMILY SYSTEMS DESIGN 	 4-85

TMS 9940
MICROCOMPUTER

Hardware Design
Architecture and
Interfacing Techniques

DECREMENTER

A timer/event counter is implemented on the 9940 chip to introduce interrupts after a
predefined time period or number of events. A set of dedicated CRU addresses define
the location of decrementer input and output registers. A value may be loaded into the
decrementer via an LDCR instruction which loads CRU locations 190 16 — 19D16.
Likewise, the current value of the decrementer may be read via an STCR instruction
identifying the same CRU field.

When the decrementer contents count down to zero, an interrupt is issued. The context
switch thus activated automatically clears the interrupt request.

As a timer, the decrementer counts down at the rate of 1/30 of the oscillator frequency.
With a clock frequency of 5 MHz, the time interval for counting is six microseconds.

As an event counter, the decrementer is first loaded with a value and it then counts down
(one bit for each positive transition on pin 7) until it reaches zero. An interrupt is then
issued.

CRU IMPLEMENTATION

One of the most important features of the 9940 is the manner in which the CRU is used
to perform pin assignments and functional control as well as input and output. The major
impact is that the external devices and some of the internal devices are under direct
control of the programmer via CRU instructions. The major emphasis (see Table 4-8) is
as follows.

32 bits of input — on-chip multiplexer
32 bits of output — on-chip flip flops
32 bit register defining signal direction (in or out) for the assignable pins
16 bit flag register — may be written or read
14 bit "clock" register—for loading the decrementer
14 bit "read" register—for reading the decrementer
16 bit shift register for receiving instructions in a multiprocessor application, or

used for sending 16-bit information over the MPSI data line to other processors
14 bit decrementer (used as a timer or counter)
256 bit CRU expansion (input and output)

4-86 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design
Architecture and
Interfacing Techniques

TMS 9940
MICROCOMPUTER

Pin assignments may be explained by showing the basic application concept, that of using
the 32 bits of internal CRU. Here the only decision is one of signal direction. It is
possible to set the configuration once during initialization and never change it. But this
limits the total number of I/O signals to 32. It is permissible to change the signal
direction of each pin as needed, thus obtaining full utilization of the 32 inputs and 32
outputs. The pins themselves (labelled PO-P31 in Table 4-9) serve as a dynamically
configurable bidirectional CRU port. Data is addressed in the CRU address field 1E0 to
1FF. Direction control is established by writing a logical one for output or zero for input
to the appropriate address(es) in the CRU field 1C0-1DF. Reading the addresses
assigned for output is permissible and allows the program to interrogate or determine
the status of the on-chip CRU output flip flops.

Functional assignments of the first 18 I/O signals may be accomplished as a
"configuring" of the pins. As shown in Table 4-9, eighteen additional signals may pass
through the pins corresponding to PO-P17. By setting configuration bit 0 for example,
signals PO-P10 are no longer available to external hardware. Instead, the CRU
expansion signals, Al-A8 and CRU controls, are available. Configuring may be
accomplished by the following code.

LI R12,> 200
	

Set CRU hardware base address at 10016

SBO >83
	

Add 83„ to set CRU bit 18316

(The LI instruction must set R12 to two times the hardware base address because the
LSB is ignored. See the CRU explanation in the TMS9940 section of Chapter 8.)

MULTIPROCESSOR SYSTEM INTERFACE (MPSI)

A two-wire communication technique is provided so that the 9940 may exchange 16-bit
data and/or instructions with other CPU's in a multiprocessor application. This
capability allows the RAM to be used as an instruction memory for short subprograms
downloaded from another processor. Since the technique is based on the CRU concept,
the 9940 will easily interface with the processors in the 9900 family. In order to use this
feature, configuration bit 1 must first be set via

LI R12, >200
SBO >84

'al..' Then the information flows in from an external processor and is clocked by the external
processor so that this operation is completely transparent to the CPU. The sender must
interrupt the receiver to cause reading of the input word via

LI R12, > 340 	 Address the MPSI register

STCR @BUFF, 0 	Store 16 bits in memory location BUFF

Refer to Table 4-8 for CRU addresses of this and other functions.

41

9900 FAMILY SYSTEMS DESIGN 	 4-87

TMS 9940
MICROCOMPUTER

Hardware Design:
Architecture and
Interfacing Techniques

► 4

To send data out over the MPSI the 9940 must first have configuration bit 1 set, and
then it simply executes

LDCR @BUFF, 0
to send out 16 bits of data from memory location BUFF. The switch into and out of
"send" status is automatic.

Table 4-9. TMS 9940 Configurabk Pins

Pin
Number

General
I/O

CR U
Address

Data I/O

CR U
Address for

Direction Control
Alternate
Function

Configuration
Bit

CR U Address
of Config. Bit

23 PO 1E0 1CO Al

,

I

o
 	
 1}13

24 P1 1E1 ICI A2 183

25 P2 1E2 1C2 A3 183

26 P3 1113 1C3 A4 183

27 P4 1E4 IC4 A5 183

28 P5 103 ICS A6 183

29 P6 1E6 106 A7 153

30 P7 1E7 1C7 AS 183

15 P5 1E8 1C8 CRU1N 183

17 pg 1E9 ICO cRuour 18:

16 P10 10A ICA CRUCLK 183

14 P11 1110 I C B EC 184

11 P12 1EC ICC ID 184

15 P13 I ED ICI) ,T, 185

10 P14 11113 ICE HI .1) 186
9 P15 1130 ICC 111.1)A 156

8 P16 11, 0 11)0 IDLE 156

7 P17 101 ID 1 EC 19E

6 PIS 102 11)2

5 P19 103 11)3

4 P20 11 , 4 1D4

3 P21 115 11)5

2 P22 106 ID()

1 P23 11'7 1D7
31 P24 11'5 11)8
32 P23 1E9 11)9

33 P26 I FA IDA
34 P27 IFB 11)13
33 P25 1 FC 1 DC
36 1'29 1,F1) I DI)
38 P30 1011 I1)0

39 P31 11, 1, 11)0

SUMMARY

The 9940 is a powerful member of the 9900 family with execution techniques which are
actually faster than the TMS9900. In fact, because of its higher speed clock (5 MHz)
and a fast on-chip execution microcycle for register location, the average throughput is
20% faster than the standard 9900 devices. The assignability of the package pins via
software adds a new dimension to microprocessor technology for improved flexibility and
performance.

For detailed information on this part, see the 9940 section of Chapter 8.

4-88 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 MACHINE CYCLES

Architecture and
Interfacing Techniques

COMPLETE LISTING OF MACHINE CYCLES

In order to complete the description of instruction execution, the individual instruction
execution cycles are given in this section. Each machine cycle consists of two or more
clock cycles (depending upon addressing mode) as defined herein. (Note: These machine
cycles apply equally to the TMS 9980A/81 microprocessor, with the exception of the
memory cycle as detailed below.) The 9900 family machine cycles are divided into three
categories described in the following paragraphs.

MACHINE CYCLES

ALU Cycle

The ALU cycle performs an internal operation of the microprocessor. The memory
interface control signals and CRU interface control signals are not affected by the
execution of an ALU cycle, which takes two clock cycles to execute.

Memory Cycle

The memory cycle primarily performs a data transfer between the microprocessor and
the external memory device. Appropriate memory bus control signals are generated by
the microprocessor as a result of a memory cycle execution. The memory cycle takes
2 + W (where W is the number of wait states) clock cycles to execute.

In the TMS 9980A/81, which has an 8-bit data bus, the memory cycle is composed of
two data transfers to move a complete 16-bit word. The TMS 9980A/81 memory cycle
takes 4 + 2W (where W is the number of wait states) clock cycles to execute. For the
TMS 9980A/81 the following machine cycle sequences replace the memory sequences
used in the instruction discussion.

CYCLE
1 	Memory read/write 	AB = Address of most significant byte (A13 =0)

DB = Most significant byte
2 	Memory read/write 	AB = Address of least significant byte (A13 =1)

DB = Least significant byte

CRU Cycle

The CRU cycle performs a bit transfer between the microprocessor and I/O devices. It
takes two clock cycles to execute. The address of the CRU bit is set up during the first
clock cycle. For an input operation the CRUIN line is sampled by the microprocessor
during the second clock cycle. For an output operation the data bit is set up on the
CRUOUT line at the same time the address is set up. The CRUCLK line is pulsed
during the second clock cycle of the CRU output cycle. Please refer to the specific 99XX
microprocessor data manual for timing diagrams.

9900 FAMILY SYSTEMS DESIGN 	 4-89

MACHINE CYCLES
	

Hardware Design:
Architecture and
Interfacing Techniques

■ 4

The 9900 executes its operations under the control of a microprogrammed control
ROM. Each microinstruction specifies a machine cycle. A microprogram specifies a
sequence of machine cycles. The 9900 executes a specific sequence of machine cycles for
a specific operation. These sequences are detailed on the following pages. The
information can be used by the systems designers to determine the bus contents and
other interface behavior at various instants during a certain 9900 operation. This
description is maintained at the address bus (AD) and data bus (DB) levels.

9900 MACHINE CYCLE SEQUENCES

Most 9900 instructions execution consists of two parts: 1) the data derivation and 2)
operation execution. The data derivation sequence depends on the addressing mode for
the data. Since the addressing modes are common to all instructions, the data derivation
sequence is the same for the same addressing mode, regardless of the instruction.
Therefore, the data derivation sequences are described first. These are then referred to
in appropriate sequence in the instruction execution description.

TERMS AND DEFINITIONS

The following terms are used in describing the instructions of the 9900:
TERM 	DEFINITION
B 	 Byte Indicator (1 = byte, 0 = word)
C 	 Bit count
D 	 Destination address register
DA 	Destination address
IOP 	Immediate operand
PC 	Program counter
Result 	Result of operation performed by instruction
S 	 Source address register
SA 	Source address
ST 	Status register
STn 	Bit n of status register
SD 	Source data register internal to the TMS 9900 microprocessor*
W 	Workspace register
SRn 	Workspace register n
(n) 	Contents of n
Ns 	Number of machine cycles to derive source operand
Nd 	Number of machine cycles to derive destination operand
AB 	Address Bus of the TMS 9900
DB 	Data Bus of the TMS 9900
NC 	No change from previous cycle

*Note: The contents of the SD register remain latched at the last value written by the processor unless changed by
the ALU. Therefore, during all memory read or ALU machine cycles the SD register and hence the data bus will
contain the operand last written to the data bus by the CPU or the results of the last ALU cycle to have loaded the
SD register.

4-90 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MACHINE CYCLES
Architecture and
Interfacing Techniques

DATA DERIVATION SEQUENCE

Workspace Register

CYCLE
1

TYPE
Memory read

DESCRIPTION
AB = Workspace register address
DB = Operand

Workspace Register Indirect

CYCLE TYPE DESCRIPTION
1 Memory read AB = Workspace register address

DB = Workspace register contents
2 ALU AB = NC

DB = SD
3 Memory read AB = Workspace register content

DB = Operand

Workspace Register Indirect Auto-Increment (Byte-Operand)

CYCLE
1

4

TYPE
Memory read

ALU

Memory write

Memory read

DESCRIPTION
AB = Workspace
DB = Workspace
AB = NC
DB = SD
AB = Workspace
DB = (WRn) +1
AB = Workspace
DB = Operand

register address
register contents

register address

register contents

Workspace Register Indirect Auto-Increment (Word Operand)

CYCLE TYPE DESCRIPTION
1 Memory read AB = Workspace register address

DB = Workspace register contents
2 ALU AB = NC

DB = SD
3 ALU AB = NC

DB = SD
4 Memory write AB = Workspace register address

DB = (WRn)+ 2
5 Memory read AB = Workspace register contents

DB = Operand

9900 FAMILY SYSTEMS DESIGN 	 4-91

MACHINE CYCLES
	

Hardware Design:
Architecture and
Interfacing Techniques

Symbolic
CYCLE 	 TYPE 	 DESCRIPTION

1 	 ALU 	 AB = NC
DB = SD

2 	 ALU 	 AB = NC
DB = SD

3 	 Memory read 	 AB = PC+2
DB = Symbolic address

4 	 ALU 	 AB = NC
DB = 0000.

5 	 Memory read 	 AB = Symbolic address
DB = Operand

Indexed

CYCLE 	 TYPE 	 DESCRIPTION
1 	 Memory read 	 AB = Workspace register address

DB = Workspace register contents
2 	 ALU 	 AB = NC

DB = SD
3 	 Memory read 	 AB = PC+2

DB = Symbolic address
4 	 ALU 	 AB = PC+2

DB = Workspace register contents
5 	 Memory read 	 AB = Symbolic address + (WRn)

DB = Operand

INSTRUCTION EXECUTION SEQUENCE

A, AB, C, CB, S, SB, SOC, SOCB, SZC, SZCB, MOV, MOVB, COC, CZC, XOR

CYCLE 	 TYPE 	 DESCRIPTION
1 	 Memory read 	 AB = PC

DB = Instruction
2 	 ALU 	 AB = NC

DB = SD
Ns

	

	 Insert appropriate sequence for source data (Note 1)
addressing mode, from the data derivation
sequences

3+Ns 	 ALU 	 AB = NC
DB = SD

Nd

	

	 Insert appropriate sequence for destination (Note 2, 3)
data addressing mode from the data
derivation sequences

4+Ns+Nd 	ALU 	 AB = NC
DB = SD

+ Ns + Nd 	Memory write 	 AB = DA (Note 4)
DB = Result

4-92 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	 MACHINE C Y CLF_

Architecture and
Interfacing Techniques

NOTES:

1) Since the memory operations of the 9900 microprocessor family fetch or store 16-bit
words, the source and the destination data fetched for byte operations are 16-bit
words. The ALU operates on the specified bytes of these words and modifies the
appropriate byte in the destination word. The adjacent byte in the destination word
remains unaltered. At the completion of the instruction, the destination word,
consisting of the modified byte and the adjacent unmodified byte, is stored in a single-
memory write operation.

2) For MOVB instruction the destination data word (16 bits) is fetched. The specified
byte in the destination word is replaced with the specified byte of the source-data
word. The resultant destination word is then stored at the destination address.

3) For MOV instruction the destination data word (16 bits) is fetched although not used.
4) For C, CB, COC, CZC instructions cycle 5 + N s + Nd above is an ALU cycle with

AB = DA and DB = SD.

MPY (Multiply)
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data (multiplier)
addressing mode

3 + Ns 	 ALU 	 AB = NC
DB = SD

Memory read 	 AB = Workspace register address
DB = Workspace register contents

5+Ns 	 ALU 	 AB = NC
DB = SD

6 +Ns 	 ALU 	 AB = NC
DB = Multiplier

7 +Ns 	 Multiply the two operands
16 ALU 	 AB = NC

DB = MSH of partial product
24 + Ns 	 Memory write 	 AB = Workspace register address

DB = MSH of the product
25 +Ns 	 ALU 	 AB = DA+2

DB = MSH of product
26 + Ns 	 Memory write 	 AB = DA +2

DB = LS11 of the product

41

9900 FAMILY SYSTEMS DESIGN 	 4-93

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

■ 4

DIV (Divide)
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data (divisor)
addressing mode

3 +Ns 	 ALU 	 AB = NC
DB = SD

4 + Ns 	 Memory read 	 AB = Address of workspace register
DB = Contents of workspace register

5+ Ns 	 ALU 	 (Check overflow)
AB = NC
DB = Divisor

6 + Ns 	 ALU 	 (Skip if overflow to next instruction fetch)
AB = NC
DB = SD

7 + Ns 	 Memory read 	 AB = DA + 2
DB = Contents of DA + 2

8 +Ns 	 ALU 	 AB = NC
DB = SD

9 + Ns 	 ALU 	 AB = NC
DB = SD

Divide sequence consisting of Ni cycles 	AB = NC
where 48.Ni.32. Ni is data dependent DB = SD

10+Ns+Ni 	ALU 	 AB = NC
DB = SD

11 + Ns + Ni 	Memory write 	 AB = Workspace register address
DB = Quotient

12 +Ns+Ni 	ALU 	 AB = DA+2
DB = Quotient

13+Ns+Ni 	Memory write 	 AB = DA+2
DB = Remainder

XOP
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 Instruction decode AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data addressing
mode

3 + Ns 	 ALU 	 AB = NC
DB = SD

4 + Ns 	 ALU 	 AB = NC
DB = SA

5 +Ns 	 ALU 	 AB = NC
DI3 = SD

6 + Ns 	 Memory read 	 AB = 40, 6 +4 x D
DB = New workspace pointer

4-94
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MACHINE CYCLES
Architecture and
Interfacing Techniques

CYCLE 	 TYPE 	 DESCRIPTION

7 + Ns 	 ALU 	 AB = NC
DB = SA

8 + Ns 	 Memory write 	 AB = Address of WR11
DB = SA

Aisok
9 + Ns 	 ALU 	 AB = Address of WR15

DB = SA
10 + Ns 	Memory write 	 AB = Address of workspace register 15

DB = Status register contents
11+Ns 	ALU 	 AB = NC

DB = PC+2
12 +Ns 	Memory write 	 AB = Address of workspace register 14

DB = PC+2
13+Ns 	ALU 	 AB = Address of WR13

DB = SD
14 + Ns 	Memory write 	 AB = Address of workspace register 13

DB = WP
15+Ns 	ALU 	 AB = NC

DB = SD
16+Ns 	Memory read 	 AB = 42 10 +4 x D

DB = New PC
17 +Ns 	ALU 	 AB = NC

DB = SD

CLR, SETO, INV, NEG, INC, INCT, DEC, DECT, SWPB
.4111■

CYCLE 	 TYPE 	 DESCRIPTION
1 	 Memory read 	 AB = PC

DB = Instruction
2 	 ALU 	 AB = NC

DB = SD
Ns 	 Insert appropriate data derivation sequence

according to the source data addressing
mode

3 + Ns 	 ALU 	 AB = NC
DB = SD

4 + Ns 	 Memory write 	 AB = Source data address
DB = Modified source data

Note: The operand is fetched for CLR and SETO although not used.
ABS
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data addressing
mode

3 + Ns 	 ALU 	 Test source data
AB = NC
DB = SD

4-I-Ns 	 ALU 	 Jump to 5' + Ns if data positive
AB = NC
DB = SD

44

9900 FAMILY SYSTEMS DESIGN 	 4-95

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

CYCLE 	 TYPE

5 +ns 	 ALU

6 + Ns 	 Memory write

5'+Ns 	 ALU

DESCRIPTION

Negate source
AB = NC
DB = SD
AB = Source data address
DB = Modified source data
AB = NC
DB = SD

11M111■11••11■

CYCLE 	 TYPE 	 DESCRIPTION
1 	 Memory read 	 AB = PC

DB = Instruction
2 	 ALU 	 AB = NC

DB = SD
Ns 	 Insert the appropriate data derivation

sequence according to the source data
addressing mode

3+Ns 	 ALU 	 AB = NC
DB = SD

Note: Add sequence for the instruction specified by the operand.

B
CYCLE TYPE DESCRIPTION

1 Memory read AB =-- PC
DB = Instruction

2 ALU AB = NC
DB = Si)

Ns Insert appropriate data derivation sequence
according to the source data addressing
mode

3 + Ns ALU AB = NC
DB = SD

Note: The source data is fetched, although it is not used.

BL
CYCLE TYPE DESCRIPTION

1 Memory read AB = PC
DB = Instruction

2 ALU AB = NC
DB = SD

Ns Insert appropriate data derivation sequence
according to the source data addressing
mode

3+Ns ALU AB = NC
DB = SD

4+ Ns ALU AB = Address of WR11
DB = SD

5 + Ns Memory write AB = Address of W R11
DB = PC + 2

Note: The source data is fetched although it is not used.

4-96 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MACHINE CYCLES
Architecture and
Interfacing Techniques

BLWP
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALL 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data addressing mode

3 +Ns 	 AB = NC
DB = SD

4+ Ns 	 ALU 	 AB = Address of WR15
DB = NC

5+Ns 	 Memory write 	 AB = Address of workspace register 15
DB = Status register contents

6 + Ns 	 ALU 	 AB = NC
DB = PC + 2

7 +Ns 	 Memory write 	 AB = Address of workspace register 14
DB = PC+2

8 + Ns 	 ALU 	 AB = Address or workspace register 13
DB = SD

9 +Ns 	 Memory write 	 AB = Address of workspace register 13
DB = WP

10+Ns 	 ALL 	 AB = NC
DB = SD

t°111W 11+ Ns 	 Memory read 	 AB = Address of new PC
DB = New PC

12+Ns 	 ALL 	 AB = NC
DB = SD

LDCR
CYCLE 	 TYPE 	 DESCRIPTION

Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
3 + Ns 	 ALU 	 AB = NC

DB = SD
4 + Ns 	 ALL 	 AB = NC

DB = SD
5 + Ns 	 ALL 	 AB = Address of W R12

DB = SD
6+Ns 	 ALU 	 AB = Address of WR12

DB = SD
7 + Ns 	 Memory read 	 AB = Address of WR12 Amok

DB = Contents of WR12
8 +Ns 	 ALU 	 AB = NC

DB = SD
C 	 Shift next bit onto LIWOLIT line. 	AB = Address + 2 Increments C Times

Enable CRUCLK. Increment CRU bit 	DB = SD
address on AB. Iterate this sequence C
times, where C is number of bits to be
transferred.

9+Ns+C 	ALU 	 AB = NC
DB = SD

44

9900 FAMILY SYSTEMS DESIGN 	 4-97

MACHINE CYCLES
	

Hardware Design:
Architecture and
Interfacing Techniques

STCR
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

Ns 	 Insert appropriate data derivation sequence
according to the source data addressing
mode

3 + Ns 	 ALU 	 AB = NC
DB = SD

4 +Ns 	 Memory read 	 AB = Address of WR12
DB = Contents of WR12

5 + Ns 	 ALU 	 AB = NC
DB = SD

6 + Ns 	 ALU 	 AB = NC
DB = SD

C 	 Input selected CRU bit. Increment CRU 	AB = Address + 2 C times
bit address. Iterate this sequence C times 	DB = SD
where C is the number of CRU bits to be
input.

7+Ns+C 	ALU 	 AB = NC
DB = SD

8+Ns+C 	ALU 	 AB = NC
DB = SD

C' 	 Right adjust (with zero fill) byte (if C<8) 	AB = NC
or word (if 8 < C < 16). 	 DB = SD

C' 	 = 8-C-1 if C < 8
= 16-C if 8 < C 	16

9 +Ns+C+C' ALU 	 AB = NC
DB = SD

10 +Ns+C+C' ALU 	 AB = NC
DB = SD

11 + Ns + C + C' ALU 	 AB = Source address
DB = SD

12 + Ns + C +C' Memory write 	 AB = Source address
DB = I/O data

Note: For STCR instruction the 16-bit word at the source address is fetched. If the
number of CRU bits to be transferred is 	8, the CRU data is right justified (with zero
fill) in the specified byte of the source word and source data word thus modified is then
stored back in memory. If the bits to be transferred is > 8 then the source data fetched
is not used. The CRU data in this case is right justified in 16-bit word which is then
stored at the source address.

4-98 	 9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MACHINE CYCLES
Architecture and
Interfacing Techniques

SBZ, SBO
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2ALU 	 AB = NC
DB = SD

3 	 ALU 	 AB = NC
DB = SD

4 	 Memory read 	 AB = Address of WR12
DB = Contents of W R 12

ALL 	 AB = NC
DB = SD

6 	 CRU 	 Set CRUOUT = 0 for SBZ
= 1 for SBO

AB = CRU Bit Address

Enable CRIJCLIK
TB
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

3 	 ALU 	 AB = NC
DB = SD

4 	 Memory read 	 AB = Address of WR12
DII = Contents of WR 12

5 	 AEU 	 AB = NC
DB = SD

6 	 CRU 	 Set ST(2) = CRUIN
AB = Address of CRU bit
DB = SD

JEQ, JGT, JH, JHE, JL, JLE, JLT, JMP, JNC, JNE, JNO, JOC, JOP
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 A1.11 	 AB = NC
DB = SD

3 	 ALU 	 Skip to cycle #5 if TMS 9900 status satisfies
the specified jump condition
AB = NC
DB = SD

ALU 	 AB = NC
DB = Displacement value

5 	 ALU 	 AB = NC
DB = SD

44

9900 FAMILY SYSTEMS DESIGN 	 4-lt()

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

SRA, SLA, SRL, SRC
CYCLE TYPE DESCRIPTION

1 Memory read AB = PC
DB = 	Instruction

2 ALU AB = NC
DB = SD

3 Memory read AB = Address of the workspace register
DB = Contents of the workspace register

4 ALU Skip to cycle #9 if C 	0
C = Shift count
AB = NC
DI3 = SD

5 ALU AB = NC
DB = SD

6 Memory read AB = Address of WRO
DB = Contents of WRO

7 ALU AB = Source address
DB = SD

8 ALU AB = NC
DB = SD

9 AB = NC
DB = SD

C Shift the contents of the specified
workspace register in the specified
direction by the specified number of bits.
Set appropriate status bits.

9 + C Memory write AB = Address of the workspace register
DB = Result

10+C ALU Increment PC

AI, ANDI, ORI

AB
DB

=
=

NC
SD

CYCLE TYPE DES(RI I' PION
1 Memory read AB = PC

DB = Instruction
2 ALU AB = NC

DB = SD
3 ALU AB = NC

DB = SD
4 Memory read AB = Address of workspace register

DB = Contents of workspace register
5 Memory read AB = PC +2

DB = Immediate operand
6 ALU AB = NC

DB = SD
7 Memory write AB = Address of workspace register

DB = Result of instruction

4- 100
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
	

MACHINE CYCLES
Architecture and
Interfacing Techniques

CI
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = NC

3 	 Memory read 	 AB = Address of workspace register
DB = Contents of workspace register

4 	 ALU 	 AB = NC
DB = SD

5 	 Memory read 	 AB = PC + 2
DB = Immediate operand

6 	 ALU 	 AB = NC
DB = SD

7 	 ALU 	 AB = NC
DB = SD

LI
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

3 	 ALU 	 AB = NC
DB = SD

4 	 Memory read 	 AB = PC + 2
DB = Immediate operand

5 	 ALU 	 AB = Address of workspace register
DB = SD

6 	 Memory write 	 AB = Address of workspace register
DB = Immediate operand

LW PI

	

CYCLE 	 TYPE 	 DESCRIPTION
1 	 Memory read 	 AB = PC

DB = Instruction
2 	 ALU 	 AB = NC

DB = SD
3 	 ALU 	 AB = NC

DB = SD
4 	 Memory read 	 AB = PC +2

DB = Immediate operand
5 	 ALU 	 AB = NC

DB = SD
LIMI

	

#11114' CYCLE 	 TYPE 	 DESCRIPTION
I 	 Memory read 	 AB = PC

DB = Instruction
2 	 ALU 	 AB = NC

DB = SD
3 	 ALU 	 AB = NC

DB = SD
4 	 Memory read 	 AB = PC +2

DB = Immediate data

44

9900 FAMILY SYSTEMS DESIGN 	 4- 101

MACHINE CYCLES
	

Hardware Design:
Architecture and
Interfacing Techniques

CYCLE 	 TYPE 	 DESCRIPTION

5 ALU 	 AB = NC
DB = SD

6 	 ALU 	 AB = NC
DB = SD

7 	 ALU 	 AB = NC
DB = SD

ST WP, STST
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 ALU 	 AB = NC
DB = SD

3 	 ALU 	 AB = Address of workspace register
DB = SD

4 	 Memory write 	 AB = Address of the workspace register
DB = TMS 9900 internal register contents

(WP or Si')

CKON, CKOF, LREX, RSET
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

2 	 AI,U 	 AB = NC
DB = SD

3 	 ALU 	 AB = NC
DB = SD

4 	 CRU 	 Enable CRUCLK
AB = External instruction code
DB = SD

ALU 	 AB = NC

DB = SD
6 	 ALU 	 AB = NC

DB = SI)

IDLE
CYCLE 	 TYPE 	 DESCRIPTION

1 	 Memory read 	 AB = PC
DB = Instruction

M.0 	 AB = NC
DB = SD

3 	 ALU 	 AB = NC
DB = SD

4 	 CRU 	 Enable CRUCLK
AB = Idle code
DB = SD

5 	 AI .0 	 AB = NC
DB = SD

6 	 ALU 	 AB = NC
DB = NC

4- 10 1
	

9900 FAMILY SYSTEMS DESIGN

Hardware Design:
Architecture and
Interfacing Techniques

MACHINE CYCLES

RTWP

CYCLE TYPE DESCRIPTION
1 Memory read AB = PC

DB 	= 	Instruction
2 ALU AB = NC

DB = SD
3 ALU WP+30
4 Memory read AB = Address of WR15

DB = StatusoLo
5 Memory read AB = Address of WR14

6 Memory read
DB 	= 	PC,,,,,
AB = Address of WR13
DB = WPinin

7 ALU AB = NC
DB = SD

MACHINE-CYCLE SEQUENCE IN RESPONSE TO EXTERNAL STIMULI

RESET

CYCLE TYPE DESCRIPTION
1* ALU AB = NC

DB = SD
2 ALU AB = NC

DB = SD
3 ALU AB = 0

DB = 0
4 Memory read AB = 0

DB = Workspace pointer
5 ALU AB = NC

DB = Status
6 Memory write AB = Address of WR15

DB = Contents of Status register
ALU AB = NC

DB = PC
8 Memory write AB = Address of workspace register 14

DB = PC+2
9 ALU AB = Address of WR13

DB = SD
10 Memory write AB = Address of workspace register 13

DB = WP
11 ALU AB = NC

DB = SD
12 Memory read AB =

DB = New PC
13 ALU AB = NC

DB = SD

*Occurs immediately after RESET is released following a minimum 3 cycle RESET

9900 FAMILY SYSTEMS DESIGN 	 4-103

■

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

4

LOAD

CYCLE
1*

2

3

4

5

6

7

8

9

10

11

TYPE
ALU

Memory read

ALU

Memory write

ALU

Memory write

ALU

Memory write

ALU

Memory read

ALU

DESCRIPTION
AB = NC
DB = SD
AB =
DB = Contents of FFFC,,,
AB = NC
DB = Status
AB = Address of WR15
DB 	= 	Contents of status register
AB = NC
DB = PC
AB = Address of WR14
DB = PC +2
AB = Address of WR13
DB = SD
AB = Address of workspace register 13
DB = WP
AB = NC
DB = SD
AB = FFFE
DB = New PC
AB = NC
DB = SD

*Occurs immediately after last clock cycle of preceding instruction.

4-104 	 9900 FAMILY SYSTEMS DESIGN

OW

Hardware Design:
	 MACHINE CYCLES

Architecture and
Interfacing Techniques

Interrupts

CYCLE
I*

2

3

4

5

6

7

8

9

10

11

TYPE
ALU

Memory read

ALU

Memory write

ALU

Memory write

ALU

Memory write

ALU

Memory read

ALU

DESCRIPTION
AB = NC
DB = SD
AB = Address of interrupt vector
DB = WP
AB = NC
DB = Status
AB = Address of WR15
DB = Status
AB = NC
DB = PC
AB = Address of WR 14
DB = PC+2
AB = Address of WR13
DB = SD
AB = Address of WR 13
DB = WP
AB = NC
DB = SD
AB = Address of second word of interrupt

vector
DB = New PC
AB = NC
DB = SD

41

*Occurs immediately after last clock cycle of preceding instruction

TIMING

The timing of the ALU, CRU, and memory cycles is shown in Figures 4-77, 78 and 79.
Figure 4-80 shows the TMS9980A/81 memory cycle.

ALU CYCLE ALU CYCLE

Ti T2

WRITE READ WRITE 	READ

ALU INTERNAL ALU INTERNAL
RESULT REGISTERS/ ALU OPERATION RESULT REGISTERS/ ALU OPERATION

INTO CONSTANTS INTO CONSTANTS
INTERNAL ONTO INTERNAL ONTO
REGISTERS ALU REGISTERS ALU

INPUT INPUT

BUSES BUSES

Figure 4-77. zILU Cycle

9900 FAMILY SYSTEMS DESIGN 	 4-105

CE

WAIT

DATA Do .015

MACHINE CYCLES Hardware Design:
Architecture and
Interfacing Techniques

CRU CYCLE
	

CRU CYCLE

OUTPUT
	

INPUT 	1
Ti T2 Ti T2 	 T1 	 T2 	I 	T1

CRUOUT

CRUCLK

CRUIN
vAvAvo vAve 'Ave V AvAvAvAv vvAv AvAvvA vAvAvvg rAvA •vvrA
AVAVAVA VAVAVAVA • AV

A
A AVAVAVAVA • • AV

A
AVA AVAVAV

A
AVA AVAVAV

A
AVAVAVA AV

A
A

i
 V

111111111111.1111111111=111 A4 - A15

Figure 4-78. CRU Cycle.

READ

WRITE
MEMORY CYCLE

T1 	 T2

Ti MEMORY CYCLE T2

DBIN

WE

L1

READY

Figure 4-79. TMS 9900 Memory Cycle (No Wait States)

4-106
	

9900 FAMILY SYSTEMS DESIGN

WRITE

T1 	 T2 	 T3 	 T4

READ

T1 	 T2 	 T3 	 T4

Hardware Design: 	 L
Architecture and
Interlacing Techniques

CKOUT

MEMEN

LJ

AO • Al2

DBIN

A13

41

WE

\ 	J\

READY /

RD \ INPUT MODE /RD \ INPUT

Figure 4-80. TMS 99804 / 81 Memory Cycle (No Wait States)

DO D7

9900 FAMILY SYSTEMS DESIGN 	 4-107

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107

